
1

G51PRG:
Introduction to Programming

Second semester
Lecture 8

Natasha Alechina

School of Computer Science & IT

nza@cs.nott.ac.uk

Lecture 8: Exceptions 2

Previous lecture

• More about interfaces and collections

• test on polymorphism and inheritance

• answer to Book and Textbook exercise

• introduction to the next exercise

Lecture 8: Exceptions 3

This lecture: exceptions

• what are exceptions for

• how to define your own exception

• how to get a method to throw an exception

• how to catch and handle exceptions

Lecture 8: Exceptions 4

Exceptions you may have seen

ArrayIndexOutOfBoundsException

ClassCastException

NullPointerException

CloneNotSupportedException

• They all are classes which extend the Trowable class of
java.lang.

• New user defined exceptions usually extend its subclass,
Exception.

Lecture 8: Exceptions 5

 What are exceptions for

• Lots of things can go wrong during the execution of a
program.

• Sometimes you can predict all of them and write lots of if-
statements which deal with all possible problems. This
may clatter the code.

• Sometimes you simply cannot predict all things which can
go wrong.

• Exceptions are a clean way to check for errors without
cluttering code. They also provide a mechanism to signal
errors directly and handle them.

Lecture 8: Exceptions 6

 How exceptions work

• An exception is thrown when an error condition is
encountered.

• If an exception is thrown, there are two possible scenarios:
– some code is provided which says what to do with the

exception (the exception is caught). Then this code is
executed, and the program continues.

– the exception is not caught by the method which was
active when the exception was thrown. It is passed to
the method which called it, and so on, until it is caught
by the default exception handler. Default exception
handler terminates the program and prints some
information about the exception and where it was
thrown.

2

Lecture 8: Exceptions 7

Exception class

• If you want to create a new exception (to signal a specific
error which may occur during execution of your program)
you extend Exception class.

• Constructors:

Exception() - constructs an Exception with no specified
detail message.

Exception(String s) - constructs an Exception with
the specified detail message.

• useful method:

public String getMessage() - returns the error
message

Lecture 8: Exceptions 8

Example: ItemNotFoundException

• Suppose you want to write an exception which is thrown
by a method which searches an array for a certain item. If
the item is found, its index in the array is returned;
otherwise an exception is thrown.

class ItemNotFoundException extends
Exception{

 public ItemNotFoundException(String s){

 super("No item \"" + s + "\" found");

 }

}

Lecture 8: Exceptions 9

 Throwing exceptions

• Exceptions which a method throws are as important as its
return type.

• If a method throws an checked exception and does not
catch it, it should be declared with a throws clause:

public static int search(Object[] arr,
Object it)throws ItemNotFoundException

• all user defined exceptions are checked

• unchecked exceptions: e.g.
ArrayIndexOutOfBoundsException

Lecture 8: Exceptions 10

 To throw an exception in the code

throw ExceptionObject;

For example:

Exception myException = new
ArrayIndexOutOfBoundsException();

throw myException;

or

throw new
ArrayIndexOutOfBoundsException();

Lecture 8: Exceptions 11

 Example

public static int search(Object[] arr,

Object it) throws ItemNotFoundException {

 for(int i = 0; i< array.length; i++){

 if(array[i].equals(it)) return i;

 }

throw new
ItemNotFoundException(it.toString());

}

Lecture 8: Exceptions 12

 Dealing with exceptions

If you invoke a method which throws a checked exception,
you have two choices:

• declare the exception in your throws clause (as above)

• catch the exception and handle it

3

Lecture 8: Exceptions 13

 Passing the exception on

First choice:

• declare the exception in your throws clause

e.g. search(Object[] arr, Object it) throws
ItemNotFoundException

this means that any method which calls search() either has
to handle this exception or also declare it.

If the exception is thrown and not handled it is eventually
caught by the default exception handler and execution of
the program stopped.

Lecture 8: Exceptions 14

 Example

public static void main (String[] args)
throws ItemNotFoundException {

 Object[] array = new Object[2];

 array[0] = new String("string");

 array[1] = new Integer(345);

 int i = search(array, "STRING");

 System.out.println("Life goes on");

}

Exception will be thrown since “STRING” is not in the array.

Lecture 8: Exceptions 15

 Example continued

The result is: execution stops, error message and call stack is
printed:

ItemNotFoundException: No item "STRING" found

 at java.lang.Throwable.(Compiled Code)

 at java.lang.Exception.(Compiled Code)

 at ItemNotFoundException.(Compiled Code)

 at Search.search(Compiled Code)

 at Search.main(Compiled Code)

Lecture 8: Exceptions 16

Catching exceptions

Option two: catch the exception and handle it (specify what
should be done if the exception is thrown).

try {
 statements;
}
catch(exception_type1, identifier1){
 statements1;
}
catch(exception_type2, identifier2){
 statements2;
}
...
} finally {
 statementsN;
}

Lecture 8: Exceptions 17

Try-catch-finally

• The try block is the "normal" code, for example a call to
search().

• The catch statements are executed if an exception of
appropriate type is thrown; there can be several catch
blocks for different kinds of exceptions; they may in turn
throw other exceptions.

• The finally block can be omitted; statements in finally
block are executed always; usually some kind of
emergency clean-up.

Lecture 8: Exceptions 18

Example

public static void main(String[] args) {
 Object[] array = new Object[2];
 array[0] = new String("string");
 array[1] = new Integer(345);
 try {
 int i = search(array, "STRING");
 }
 catch(ItemNotFoundException e){
 System.out.println(e.getMessage());
 }
 System.out.println(“Got here”);
}

4

Lecture 8: Exceptions 19

Summary and further reading

• Exceptions are a clean way to check for errors without
cluttering code. They also provide a mechanism to signal
errors directly and handle them.

• You should be able to define your own exception types,
define methods which throw exceptions if an unexpected
condition occurs, and to be able to catch exceptions.

• Keywords: throw, throws, try, catch, finally.

• For more information and examples see Java Gently, or
Arnold and Gosling pp. 151 - 160, or

http://java.sun.com/docs/books/tutorial/essential/exceptions/index.html

