
1

G51PRG:
Introduction to Programming

Second semester
GUI continued

Natasha Alechina

School of Computer Science & IT

nza@cs.nott.ac.uk

GUI continued 2

Previous lecture (before Easter)

• AWT and Swing

• Some simple components

• Layout managers

Hopefully, can now create a window with buttons and text
fields:

GUI continued 3

Plan of today's lecture

• How to make GUI interact with the user - respond to
events?

• Java Event Model

• Nested classes and anonymous classes

• Some hints for the Browser exercise

GUI continued 4

Java Event Model

• GUI is an event driven application

• source of an event can be a button, a window, a text field
...

• event is an object generated by the source

• the source sends events which it generates to listeners
which are registered with the source

• the listeners deal with the event

GUI continued 5

Difference from Visual Basic

• In many GUI programming languages, like VB, buttons
have a method to respond to events, e.g.

public void buttonPressed() {

// what to do if this happens

}

• not so in Java: components themselves do not do event
handling; they may register other objects with them, so
called event listeners, which have methods to respond to
events.

GUI continued 6

Java Event Model

Event source
e.g. button A

Event listener C

Event listener D

Event source
e.g. text field B

C listens to events from A

D listens to events from A and B

2

GUI continued 7

How to make it work

• Write a class which defines the event listener. If you
need a listener for an Action Event, like a button click,
implement ActionListener. If you need a listener for
window events (e.g. closing a window), implement
WindowListener. If you need a listener for mouse events,
implement MouseListener or MouseMotionListener. This
involves implementing a method which responds to the
event, e.g. actionPerformed() of the ActionListener.

• Create an instance of that class. Add it to the component
which needs an event listener.

GUI continued 8

Example

• Suppose we want to exit if the user clicks “Exit” button.

• We need to register an event listener with the “Exit”
button.

Exit button Listener object
register

GUI continued 9

Example

• The listener object should be an instance of a class which
implements ActionListener interface.

• When it gets an ActionEvent from the button, it executes
the actionPerformed() method which calls System.exit().

Exit button Listener object
event

GUI continued 10

Writing a listener class

• Write a new class which implements the action listener (so
it has actionPerformed(ActionEvent e)
method)

• actionPerformed(ActionEvent e) calls
System.exit(1)

• Create an instance x of this class

• Register this instance x with the exit button

• actionPerformed() will be invoked by x when the
exit button generates an event (is clicked).

GUI continued 11

Example

class NewListener implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 System.exit(1);

 }

}

And then add these two lines in the constructor of
SimpleGUI:

NewListener x = new NewListener();

exitB.addActionListener(x);

or simply
exitB.addActionListener(new NewListener());

GUI continued 12

Alternatively

• Make the main window class (extending JFrame) to double
as an event listener

• Get it to implement the action listener

• Define actionPerformed() method which when an
action event is generated calls System.exit(1).

• The current instance of the frame is registered with the exit
button as an event listener (so it listens to evens generated
by the exit button).

3

GUI continued 13

Example: frame is the listener

class SimpleGUI extends JFrame implements
ActionListener {

// buttons and text fields omitted

 public SimpleGUI(){

// creation of buttons, text fields and panels

// is omitted here

 exitB.addActionListener(this);

 }

 public void actionPerformed(ActionEvent e) {

 System.exit(1);

 }

GUI continued 14

Distinguishing events from different
sources
• If one listener is registered with several event sources

• How can it react in one way if exit button is pressed, and in
another way if some other button is pressed?

GUI continued 15

EventObject

The Event class is the abstract root class from which all
event state objects shall be derived (GUI event from
AWTEvent).

Field:
•Object source

Methods:
•Object getSource()

•String toString()

GUI continued 16

Listening on several event sources

public void actionPerformed(

 ActionEvent e){

 if(e.getSource().equals(exitB)) {

 System.exit(1);

 }

 if(e.getSource().equals(okB)) {

 label.setText(“Hello,“+tf.getText());

 }

}

GUI continued 17

Adapter Classes

Same function as Listener Interfaces, but classes which
provide empty implementation of methods.

Extending an Adapter is sometimes more convenient than
implementing an interface as one does not have to provide
implementation for all its methods.

GUI continued 18

Example: WindowAdapter

• WindowAdapter is a class which implements a
WindowListener interface providing an empty
implementation for all its methods.

• If you only need to implement one method of the
WindowListener, for example windowClosing(),
you would have to provide a dummy implementation for
all other methods.

• Instead, you could extend WindowAdapter and
overwrite just one method.

4

GUI continued 19

Example

class MyClass extends WindowAdapter {

 public void windowClosing(WindowEvent e)
{

 System.exit(1);

 }

}

GUI continued 20

Problems with examples before

• Have to keep inventing new class names for all those
listeners

• New classes litter the program (make it long and
unreadable, or scatter around in the working directory)

• If you need to change other components (not just to exit)
then they should be “visible” from the listener class, so
can’t be declared private in the main class.

GUI continued 21

Answer: inner classes

• Recall that classes can be declared inside other classes, and
inside methods and blocks in other classes.

• All those classes are called inner classes (in Java Gently;
in other sources you may meet nested classes as a generic
term).

class TopLevelClass {
 // some code
 class NestedClass {
 // some code for the NestedClass
 } // end of NestedClass
} // end of TopLevelClass

GUI continued 22

When compiled

• TopLevelClass.class

• TopLevelClass$NestedClass.class

GUI continued 23

Types of inner classes

• An inner class can be declared static: then it basically has
the same status as a top-level file and is just grouped inside
another file for convenience. Java Gently calls such classes
nested classes.

• If an inner class is not declared static, it has a subordinate
status. Java Gently calls it a member class. It can access all
members of the encompassing class, including private
members.

• Local class is a member of a method or a block.

• Anonymous class is a local class without a name.

GUI continued 24

Example of anonymous class

f.addWindowListener (new WindowAdapter ()

// class definition follows:

{

 public void windowClosing(WindowEvent e)
{

 System.exit(1);

 }
}
);

Here, the class definition is in italics; the class is not given a
name and its definition is nested in a method call.

5

GUI continued 25

What is it equivalent to

class X extends WindowAdapter {

 public void windowClosing(WindowEvent e) {

 System.exit(1);

 }
}

f.addWindowListener (new X());

GUI continued 26

Event thread

When Swing is used to create a window, a separate thread of
execution is created, which enters an infinite loop waiting for
events to happen.

Unlike AWT, Swing is not thread safe --- the access to the
contents of the window is not synchronised. You should take
care that after the window is displayed, all changes in the
appearance of the window are done within the event thread
and no other thread has access to them as well.

GUI continued 27

Hint for the Browser exercise

• The previous example shows how to get text (a String)
from a text field in response to a button click.

• You can use the resulting String to create a URL object.

• Then you can get the contents of the page at the URL as a
String (see lecture on networking).

• If you just wanted to display that String as plain text,
you could use setText() method of JEditorPane to
do this, as we did with a label in the previous example.

• Unfortunately, displaying html is not that simple (read
setText() method description in JEditorPane API
description).

GUI continued 28

Hint for the Browser exercise cont.

• I don’t want to go into details of JTextComponents
and their document models, which are needed to do this
properly and adjust the document model for every new
html page.

• Instead, here is an ugly but simple method for refreshing
pages.

GUI continued 29

Hint for the Browser exercise cont.

Suppose your JEditorPane object is called jpane. Every
time you need to display a new html String s in jpane,
do:

jpane.setVisible(false);

jpane = new JEditorPane(“html/text”, s);

this.getContentPane().add(“Center”,jpane);

jpane.setVisible(true);

GUI continued 30

Hint for the Browser exercise cont.

Finally, you may use

jpane = new JEditorPane(url);

where url is a URL object. This would always work with
simple web pages but you may get problems with web
pages using style sheets, like the School web page. Again
there are fixes for this but I’d like to keep things simple.

6

GUI continued 31

Summary

The main points are:

• Java Event Model

• Communication by sending objects

• Listeners register with event sources and handle events.

• Anonymous classes are used to write compact code for
event listeners.

For more examples see Java Gently, Chapter 11 or Sun Java
tutorial.

