
1

G51PRG:
Introduction to Programming

Second semester
Lecture 4

Natasha Alechina

School of Computer Science & IT

nza@cs.nott.ac.uk

Lecture 4: Inheritance 2

Previous lecture

• Static modifier

• extending classes

• superconstructing

2

Lecture 4: Inheritance 3

Plan of the lecture

• A bit on the current exercise: class definitions, file names,
testing code

• overriding methods

• super keyword

• polymorphism

Lecture 4: Inheritance 4

Files and classes

• You can define several Java classes in one file
• For example, in a file called File.java, you can have
class A {

 …
}

class B {

 …

}

• proviso: at most one class can be declared public. If for
example B is declared public, the file should be called
B.java

3

Lecture 4: Inheritance 5

Book class and Textbook class

• For the current exercise, classes should be defined in
separate files.

• This is usually a good practice anyway.

• So you need to have Book.java file with the definition of
the Book class and a Textbook.java file with the definition
of the Textbook class.

Lecture 4: Inheritance 6

Testing

• You are asked to write a class definition (fields,
constructor and some methods).

• You need to check if it is correct: constructor sets the
fields, methods work as they should.

• How do you go about writing the testing code and where
do you put it?

4

Lecture 4: Inheritance 7

Testing code

• You need to run the tests, so you need a main() method.

• In general, it will call the methods you are testing and
perhaps some other methods you need for systematic
testing (for example, to read test data from files, generate
testing data…)

• For very simple programs like Book and Textbook, the
main can do all the work.

• Where do you put the main method? In the class you are
testing or in a separate class?

Lecture 4: Inheritance 8

Where to put the main() for testing

• Occasionally you need to access private fields of your
class when testing. For example, if you want to test the
constructor which sets private fields. Or when you are
trying to understand how Java works and just experiment
with inheritance and private fields. In this case the only
place to put the main() is the class itself.

• Normally what you want to test is the class behaviour as
seen by other programs, that is, non-private members of
the class. Then it is better to write a separate class for
testing and put the main() there.

5

Lecture 4: Inheritance 9

How to test Book and Textbook (1)

• You need to test if your constructor works: whether it sets
the class fields to correct values and whether the inventory
number is assigned correctly.

• Obviously you need to create several objects (otherwise no
way to test the inventory numbers).

• You need to create several books and textbooks, and you
need to check that they get numbers in sequence: book1
gets number 1, textbook1 gets number 2, book2 gets
number 3 etc. If you ask for book1’s number after you
created more books and textbooks, it should still have
inventory number 1.

Lecture 4: Inheritance 10

How to test Book and Textbook (2)

• The easiest way to achieve this is to hardwire object
creation and testing in the main. You can call print()
method to display the details of the book/textbook and you
can also put in print statements which tell you what the
expected outcome should be:

Book book3 = new Book(“A”,“T3”,“P”,“Y”);

System.out.println(“Test 3: expected
outcome A,T3,P,Y, number 3”);

book3.print();

6

Lecture 4: Inheritance 11

How to test Book and Textbook (3)

Book book3 = new Book(“A”,“T3”,“P”,“Y”);

System.out.println(“Test 3: expected
outcome A,T3,P,Y, number 3”);

book3.print();

Textbook t = new
Textbook(“AA”,“TT”,“PP”,“YY”, “CC”);

System.out.println(“Test 4: expected
outcome AA,TT,PP,YY,CC number 4”);

t.print();

System.out.println(“Test 5: expected
outcome A,T3,P,Y number 3”);

book3.print();

Lecture 4: Inheritance 12

How to test in general

• Think of all behaviours which you need to test.

• Construct test cases (after I call this method - the outcome
should be like that).

• Put test cases in the main (print statement with expected
outcome - then display the actual result).

• When there are too many test cases to produce and check
manually, generate a test file with data and get the program
to save all failed tests to another file instead of matching
outputs on the screen yourself as above.

7

Lecture 4: Inheritance 13

Using the parent’s constructor

• Usually, a constructor in the child class will need to set
more values than in the parent class

• Can call super() to do the work which the constructor in
superclass does

• Using a constructor from a superclass is called
superconstructing.

Lecture 4: Inheritance 14

Using the parent’s constructor

• For example, if Point has the following constructor:
Point(int x, int y){

 this.x = x;
 this.y = y;
 }

• Then we could add the following constructor to Pixel
Pixel(int x, int y, Color color){
 super(x,y);
 this.color = color;
 }

8

Lecture 4: Inheritance 15

Changing parent’s methods and
fields
• Extending classes would have been too restrictive if you

could only inherit a method exactly as it is and could not
change or expand it.

• We can override the parent's method completely or use it
as part of the implementation of the child's method.

Lecture 4: Inheritance 16

Points and Pixels again

class Point {
 public int x,y;
 public void clear() {
 this.x = 0;
 this.y = 0;
 }
}
class Pixel extends Point {
 Color color;
 public void clear() {
 super.clear();
 color = null;
 }
}

9

Lecture 4: Inheritance 17

Keyword super

• super references fields and methods from the superclass
just as this references fields and methods from the
current object.

• super.clear() means the clear() method from the
superclass.

• When super.something is invoked, the runtime
system looks back up the inheritance hierarchy to the first
superclass which contains the required something .

Lecture 4: Inheritance 18

Overriding

• We can totally change the implementation of some method
in the subclass (don’t have to call super first!).

10

Lecture 4: Inheritance 19

Points and Pixels (3)

class Point {
…
 public boolean hasColor() {

 return false;

 }
}
class Pixel extends Point {
 Color color;
…
 public boolean hasColor() {
 return true;
 }
}

Lecture 4: Inheritance 20

Changing fields in the subclass

• Just as methods inherited from the superclass can change,
fields can be modified as well.

• For example, we could change the type of x and y in Pixel
from int to short:

 class Pixel extends Point{
 short x,y;
 }

• or even just declare them again as ints: this will produce
new fields also called x and y:

class Pixel extends Point{
 int x,y;
 }

11

Lecture 4: Inheritance 21

Changing fields in the subclass

• In general, subclass and superclass can have a field with
the same name but different type or holding different
values. In this case the field of superclass is hidden .

• You can access the parent’s value of x with super.x (if
it’s not private) as opposed to this.x.

Lecture 4: Inheritance 22

Changing fields in the subclass

• For example:

class A {

 int x = 0;

}

class B extends A {

 int x;

 public B(int a) {this.x = a;}

 public int getX() {return this.x;}

 public int getSuperX(){return super.x;}

}

12

Lecture 4: Inheritance 23

Changing fields in the subclass

• Then if we do

 B obj = new B(5);

 System.out.println(obj.getX());

// will get 5

 System.out.println(obj.getSuperX());

// will get 0

Lecture 4: Inheritance 24

Polymorphism

• So far it was all about code re-use in class definitions.

• Another great advantage of inheritance is code re-use due
to polymorphism.

• Polymorphism means that the type system is flexible. If a
method expects an argument of type A, for example

distance(A obj)

• then sometimes you can pass it arguments of another type:

B obj = new B(5);

distance(obj)

and it will still compile and run.

13

Lecture 4: Inheritance 25

Polymorphism in Java

• Different languages have different degrees of flexibility in
type systems.

• Prolog, LISP, some scripting languages are very relaxed.

• Haskell is pretty strict.

• Java has inheritance polymorphism: you can use objects
of subclasses where the expected type of argument is an
object of a superclass.

• Rule of thumb: if Pixel extends Point then it is a special
kind of Point. So where Points are required, Pixel will do
just as well (not vice versa: where Pixels are required,
Points may not have enough information to work).

Lecture 4: Inheritance 26

Example

• We have a distance (Point p) method in the Point
class. Pixel extends Point.

• So we if we have an object of type Pixel, we can pass it to
the distance method:

Point point = new Point(4,5);

Pixel pix = new Pixel(5,6,Color.red);

System.out.println(point.distance(pix));

• so we do not need to write four separate methods to find
distance between two points, two pixels, a point and a
pixel, a pixel and a point. One method works!

14

Lecture 4: Inheritance 27

Another example

• If we have an array designed to hold references to Points,
we can put a Pixel in that array.

Point[] points = new Point[3];

Pixel pix = new Pixel(5,6,Color.red);

points[0] = pix;

• Note that if you try to stick a String or a Person into an
array of Points, the compiler would not let you.

• Also, if you have an array of Pixels, you cannot put a Point
there.

Lecture 4: Inheritance 28

General rule

• Class B extends A

• all Bs are a special kind of As

• you can use Bs where As are expected.

15

Lecture 4: Inheritance 29

Further reading

• Sun Java tutorial:

http://java.sun.com/docs/books/tutorial/java/javaOO/index.ht
ml

