G51PRG:
Introduction to Programming
Second semester
Lecture 4

Natasha Alechina
School of Computer Science & IT
nza@s. nott. ac. uk

Previous lecture
» Static modifier

» extending classes
* superconstructing

Lecture 4: Inheritance

Plan of the lecture

« A bit on the current exercise: class definitions, file names,
testing code

« overriding methods
* super keyword
¢ polymorphism

Lecture 4: Inheritance 3

Files and classes

* You can define several Javaclassesin onefile
* For example, in afile caled Filejava, you can have
class A {

}

class B {

}

* proviso: at most one class can be declared public. If for
example B is declared public, the file should be called
B.java

Lecture 4: Inheritance

Book class and Textbook class

« For the current exercise, classes should be defined in
separate files.

« Thisisusually agood practice anyway.

« Soyou need to have Book.java file with the definition of
the Book class and a Textbook.java file with the definition
of the Textbook class.

Lecture 4: Inheritance 5

Testing

* You are asked to write a class definition (fields,
constructor and some methods).

* You need to check if it is correct: constructor setsthe
fields, methods work as they should.

» How do you go about writing the testing code and where
do you put it?

Lecture 4: Inheritance




Testing code

* You need to run the tests, so you need amain() method.

« Ingenera, it will cal the methods you are testing and
perhaps some other methods you need for systematic
testing (for example, to read test data from files, generate
testing data...)

« For very simple programs like Book and Textbook, the
main can do all the work.

* Where do you put the main method? In the class you are
testing or in a separate class?

Lecture 4: Inheritance 7

Where to put the main() for testing

* Occasionally you need to access private fields of your
class when testing. For example, if you want to test the
constructor which sets private fields. Or when you are
trying to understand how Java works and just experiment
with inheritance and private fields. In this case the only
place to put the main() is the classitself.

» Normally what you want to test is the class behaviour as
seen by other programs, that is, non-private members of
the class. Then it is better to write a separate class for
testing and put the main() there.

Lecture 4: Inheritance 8

How to test Book and Textbook (1)

* You need to test if your constructor works: whether it sets
the classfields to correct values and whether the inventory
number is assigned correctly.

« Obviously you need to create severa objects (otherwise no
way to test the inventory numbers).

* You need to create several books and textbooks, and you
need to check that they get numbers in sequence: book1
gets number 1, textbook1 gets number 2, book?2 gets
number 3 etc. If you ask for book1's number after you
created more books and textbooks, it should still have
inventory number 1.

Lecture 4: Inheritance 9

How to test Book and Textbook (2)

* Theeasiest way to achieve thisis to hardwire object
creation and testing in the main. Y ou can call print()
method to display the details of the book/textbook and you
can also put in print statements which tell you what the
expected outcome should be:

Book book3 = new Book(“A",“T3",“P","“Y");

Systemout. println(“Test 3: expected
outcome A T3,P,Y, nunber 3");

book3. print();

Lecture 4: Inheritance 10

How to test Book and Textbook (3)

Book book3 = new Book(“A’,“T3",“P",“Y");

Systemout. println(“Test 3: expected
outcone A T3,P,Y, nunber 3");

book3. print();

Text book t = new
Text book(“AA", “TT",“PP",“YY", “CC");

Systemout.println(“Test 4: expected
out come AA TT, PP, YY, CC nunber 4");

t.print();

Systemout.println(“Test 5. expected
outcome A, T3, P, Y nunber 3");

book3. print();

Lecture 4: Inheritance 11

How to test in general

» Think of al behaviours which you need to test.

» Construct test cases (after | call this method - the outcome
should be like that).

* Put test casesin the main (print statement with expected
outcome - then display the actual result).

* When there are too many test cases to produce and check
manually, generate atest file with data and get the program
to save all failed tests to another fileinstead of matching
outputs on the screen yourself as above.

Lecture 4: Inheritance 12




Using the parent’s constructor

« Usually, aconstructor in the child classwill need to set
more values than in the parent class

« Can call super() to do the work which the constructor in
superclass does

« Using a constructor from asuperclassis called
superconstructing.

Lecture 4: Inheritance 13

Using the parent’s constructor

* For example, if Point has the following constructor:
Point(int x, int y){
this.x X;
this.y y;

}

* Then we could add the following constructor to Pixel
Pixel (int x, int y, Color color){
super(Xx,Yy);
this.color = color;

Lecture 4: Inheritance 14

Changing parent’s methods and
fields

« Extending classes would have been too restrictive if you
could only inherit a method exactly asit is and could not
change or expand it.

* We can override the parent's method completely or use it
as part of the implementation of the child's method.

Lecture 4: Inheritance 15

Points and Pixels again

class Point {
public int x,vy;
public void clear() {
this.x 0;
this.y 0;
}

cl ass Pi xel extends Point {
Col or col or;
public void clear() {
super.clear();
color = null;

Lecture 4: Inheritance 16

Keyword super

« super references fields and methods from the superclass
justast hi s referencesfields and methods from the
current object.

e super.clear() meansthecl ear () method from the
superclass.

* Whensuper . sonet hi ng isinvoked, the runtime
system looks back up the inheritance hierarchy to the first
superclass which contains the required sonet hi ng .

Lecture 4: Inheritance 17

Overriding

* We can totally change the implementation of some method
in the subclass (don’t have to call super first!).

Lecture 4: Inheritance 18




Points and Pixels (3)
class Point {

public bool ean hasCol or () {
return fal se;

}

class Pixel extends Point {
Col or color;

public bool ean hasCol or () {
return true;
}

}

Lecture 4: Inheritance 19

Changing fields in the subclass

 Just as methods inherited from the superclass can change,
fields can be modified as well.

» For example, we could change the type of x and y in Pixel
fromint to short:
cl ass Pixel extends Point{
short x,y;
}

e or even just declare them again asints: thiswill produce
new fields also called x and y:
cl ass Pixel extends Point{
int x,y;
}

Lecture 4: Inheritance 20

Changing fields in the subclass

* Ingeneral, subclass and superclass can have afield with
the same name but different type or holding different
values. Inthiscasethefield of superclassishidden .

* You can access the parent’s value of x with super . x (if
it'snot private) asopposed tot hi s. x.

Lecture 4: Inheritance 21

Changing fields in the subclass

* For example:
class A {
int x =0;
}
class B extends A {
int x;
public B(int a) {this.x = a;}
public int getX() {return this.x;}
public int getSuperX(){return super.x;}

Lecture 4: Inheritance 22

Changing fields in the subclass

e Thenif wedo

B obj = new B(5);

System out. println(obj.getX());
/Il will get 5

System out. println(obj.getSuperX());
/1l will get O

Lecture 4: Inheritance 23

Polymorphism

» Sofaritwasall about code re-use in class definitions.

» Another great advantage of inheritance is code re-use due
to polymor phism.

* Polymorphism means that the type system isflexible. If a
method expects an argument of type A, for example

di stance(A obj)

« then sometimes you can pass it arguments of another type:
B obj = new B(5);

di st ance(obj)

and it will still compile and run.

Lecture 4: Inheritance 24




Polymorphism in Java

Different languages have different degrees of flexibility in

type systems.

Prolog, LISP, some scripting languages are very relaxed.

e Haskell is pretty strict.

« Java has inheritance polymorphism: you can use objects
of subclasses where the expected type of argument is an
object of a superclass.

* Rule of thumb: if Pixel extends Point then it is a special

kind of Point. So where Points are required, Pixel will do

just aswell (not vice versa: where Pixels are required,

Points may not have enough information to work).

Lecture 4: Inheritance 25

Example

* Wehaveadi stance (Point p) method inthe Point
class. Pixel extends Point.

* Soweif we have an object of type Pixel, we can passit to
thedi st ance method:

Poi nt point = new Point(4,5);
Pi xel pix = new Pixel (5,6, Col or.red);
System out. println(point. di stance(pix));

» sowe do not need to write four separate methods to find
distance between two points, two pixels, apoint and a
pixel, apixel and a point. One method works!

Lecture 4: Inheritance 26

Another example

« If we have an array designed to hold references to Points,
we can put aPixel in that array.

Poi nt[] points = new Point[3];

Pi xel pix = new Pixel (5,6, Color.red);

poi nts[0] = pix;

« Notethat if you try to stick a String or a Person into an
array of Points, the compiler would not let you.

¢ Also, if you have an array of Pixels, you cannot put a Point
there.

Lecture 4: Inheritance 27

General rule
* Class B extends A

« dl Bsareaspecia kind of As
* you can use Bs where As are expected.

Lecture 4: Inheritance 28

Further reading

¢ SunJavatutorial:

http://java.sun.com/docs/books/tutorial/javaljavaOO/index.ht
ml

Lecture 4: Inheritance 29




