
1

G51PRG:
Introduction to Programming

Second semester
Lecture 7

Natasha Alechina

School of Computer Science & IT

nza@cs.nott.ac.uk

Lecture 7: Interfaces 2

Previous lecture

• abstract classes

• interfaces

• collections hierarchy in Java

2

Lecture 7: Interfaces 3

This lecture

• More about interfaces and collections

• test on polymorphism and inheritance

• answer to Book and Textbook exercise

• introduction to the next exercise

Lecture 7: Interfaces 4

How to define an interface

public interface Collection{

 public void add(Object o);

 public int size();

…

}

public interface List extends Collection{

 public int indexOf(Object o);

 public Object get(int index);

…

}

3

Lecture 7: Interfaces 5

Example: Java Collections (part of)

Collection interface

List interfaceSet interface AbstractCollection
(abstract) class

AbstractList (abstract) class
AbstractSequentialList
abstract class

Vector class ArrayList class
LinkedList class

Lecture 7: Interfaces 6

Interfaces as types

• We can declare a variable of a type corresponding to an
interface:

List things = new ArrayList();

• If a class implements an interface (as Vector implements
List) we can use objects of that class when a method
requires objects of interface type (as sort(List l)):

Vector myvector = new Vector();

Colections.sort(myvector);

(can use myvector where objects of type AbstractList or
List are required, in the usual inheritance polymorphism
style).

4

Lecture 7: Interfaces 7

Why is it useful to implement List

• Some utility methods exist which work for all Collections.
• For example, a method which can sort any data structure of

type List.
• Not a separate sorting method for Vectors, a separate

method for ArrayLists, a separate method for LinkedLists,
but a method for any class implementing List.

• In general utility methods for Collections are held in a
class from java.util package (need to import it this package
to use Colections!). The class is called Collections.

Lecture 7: Interfaces 8

Java.util.Collections.sort(List list)

• public static void sort(List list)

This method sorts elements in the list in ascending order
using natural ordering of elements in the list.

• If we are sorting a list of numbers, we know what natural
ordering means: the less than relation <.

• What do we do about an arbitrary list of arbitrary things?
How do we compare them and decide which one should be
before the other?

• In order for the method to work, things in the list must be
guaranteed to implement compareTo() method.

• They way to achieve this in Java is to require that they
implement Comparable interface.

5

Lecture 7: Interfaces 9

Comparable interface

public int compareTo(Object o)

• This is the only method in this interface.
• It returns a negative integer if current object is before o in

the natural order, 0 if they are the same, and positive
integer if it is after o.

• Strings implement Comparable (compareTo() supports
lexicographic ordering of Strings).

• Numbers implement Comparable (compareTo() supports
ordering of numbers).

Lecture 7: Interfaces 10

Example: Integers

public int compareTo(Object o){

 return (this.intValue() -

 ((Integer) o).intValue());

}

• This is how we could have implemented compareTo() for
Integers.

• Note that we need to cast o to Integer.
• Often people return -1 if this object is less than o, 0 if they

are the same, 1 if this is greater than o.

6

Lecture 7: Interfaces 11

Example: sorting a Vector

For any objects which implement Comparable, in this case
Integers:

Vector myVector = new Vector();

myVector.add(new Integer(5));

myVector.add(new Integer(3));

myVector.add(new Integer(7));

Collections.sort(myVector);

// now myVector is sorted in natural

// order of Integers

Lecture 7: Interfaces 12

Example: iterating through a Vector

• Here is a simple minded iteration not using an
Iterator object.

Vector myVector = new Vector();

myVector.add(new Integer(5));...

for(int i = 0; i < myVector.size(); i++){

 System.out.println(

 ((Integer)myVector.get(i)).intValue());

}

7

Lecture 7: Interfaces 13

Test

• 5 minutes to look at the classes and interfaces
• it is useful to draw a class hierarchy
• try to answer the questions
• then I’ll go through them and explain

Lecture 7: Interfaces 14

Cartoon Characters

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

8

Lecture 7: Interfaces 15

Does House have display() method?

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces 16

Yes, House has display() method

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

9

Lecture 7: Interfaces 17

Does House have moveLeft()?

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces 18

Does House have moveLeft()? No!

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

10

Lecture 7: Interfaces 19

Does Hunter have images field?

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces 20

Does Hunter have images field? No:
it’s declared as private in
CartoonPart, can’t access it in Hunter

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

11

Lecture 7: Interfaces 21

Does Hunter have panic() method?

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces 22

Does Hunter have panic() method?
Yes.

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

12

Lecture 7: Interfaces 23

CartoonCharacter for Displayable?

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces 24

CartoonCharacter for Displayable?
Yes!

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

13

Lecture 7: Interfaces 25

CartoonPart for Displayable?

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces 26

CartoonPart for Displayable? Yes!

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

14

Lecture 7: Interfaces 27

Displayable for CartoonCharacter?

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces 28

Displayable for CartoonCharacter?
No!

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

15

Lecture 7: Interfaces 29

Duck for CartoonCharacter?

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces 30

Duck for CartoonCharacter? Yes!

interface Displayable

interface Movable
abstract class
CartoonPart

abstract class
CartoonCharacter

House Duck Rabbit Wolf Hunter

16

Lecture 7: Interfaces 31

New exercise

• Implement a class hierarchy

Publication

Book Article TechReport

Lecture 7: Interfaces 32

New exercise

• Make sure all publications implement Comparable
• Get a list of publications from the user
• Put them in some collection which implements List

interface (LinkedList, Vector, ArrayList)
• Sort them in alphabetical order using Collections.sort()

17

Lecture 7: Interfaces 33

Previous exercise: Book class

• Write a class Book which has fields author, title, publisher,
year, registration number.

• Book constructor takes author, title, publisher (Strings),
year (int).

• Registration number (int) is generated by counting how
many Book objects have been created.

• Books have print() method which prints all the fields.

Lecture 7: Interfaces 34

Book constructor

class Book {
 static int count = 1;
 private String author, title, publisher;
 private int year, number;
 public Book(String a, String t, String
p, int y) {

 this.author = new String(a);
 this.title = new String(t);
 this.publisher = new String(p);
 this.year = y;
 this.number = count++;
 }

18

Lecture 7: Interfaces 35

Book print()

 public void print() {

 System.out.println(author);

 System.out.println(title);

 System.out.println(publisher + ", " +
year);

 System.out.println("Library number " +
number);

 } // end print

} // end class Book

Lecture 7: Interfaces 36

Previous exercise: Textbook

• Write a class Textbook which extends Book.
• Has additional field String course.
• Constructor takes author, title, publisher (Strings), year

(int), course (String).
• Registration number is generated by counting how many

Book or Textbook objects have been created.
• print() method prints all the fields + course.

19

Lecture 7: Interfaces 37

Textbook

class Textbook extends Book {
 private String course;
 public Textbook(String a, String t,
String p, int y, String c) {

 super(a, t, p, y);
 this.course = new String(c);
 } // end constructor
 public void print() {
 super.print();
 System.out.println("Course " + course);
 } // end print
} // end class Textbook

Lecture 7: Interfaces 38

Summary and further reading

• Abstract classes and interfaces allow Java programmers to
implement methods at the right place in the class hierarchy
and re-use code.

• I covered general principles of extending classes,
implementing interfaces, and using methods
polymorphically, but only a tip of the iceberg in Collection
classes and other library methods.

• If you are interested look at Iterators and Comparators.

• For class hierarchies and interfaces, read
http://java.sun.com/docs/books/tutorial/java/javaOO/subclasses.html

http://java.sun.com/docs/books/tutorial/java/interpack/interfaces.html

