G51PRG:
Introduction to Programming

Second semester
Lecture 7

Natasha Alechina
School of Computer Science & IT
nza@s. nott. ac. uk

Previous lecture

 abstract classes
* interfaces
 collections hierarchy in Java

Lecture 7: Interfaces




This lecture

» More about interfaces and collections

* test on polymorphism and inheritance
» answer to Book and Textbook exercise
* introduction to the next exercise

Lecture 7: Interfaces

How to define an interface

public interface Collection{
public void add(Cbject 0);
public int size();

}

public interface List extends Collection{
public int indexCOf((Qoject 0);
public Object get(int index);

Lecture 7: Interfaces




Example: Java Collections (part of)

Collection interface

— T~

Set interface List interface AbstractCollection
(abstract) class

/

o Seq A AbstractList (abstract) class
AbstractSequentialList
abstract class / l \
. v . Vector class ArrayList class
LinkedList class

Lecture 7: Interfaces 5

Interfaces as types

* We can declare avariable of atype corresponding to an
interface:

Li st things = new ArraylList();
 |f aclassimplements an interface (as Vector implements

List) we can use objects of that class when a method
requires objects of interfacetype (assort (Li st 1)):

Vector nyvector = new Vector();
Col ections. sort (nmyvector);

(canusenyvect or where objects of type AbstractList or
List are required, in the usual inheritance polymorphism
style).

Lecture 7: Interfaces 6




Why is it useful to implement List

Some utility methods exist which work for all Collections.
For example, a method which can sort any data structure of
typeList.

Not a separate sorting method for Vectors, a separate
method for ArrayLists, a separate method for LinkedLists,
but a method for any class implementing List.

In general utility methods for Collectionsare heldin a
class from java.util package (need to import it this package
to use Colections!). The classis called Collections.

Lecture 7: Interfaces 7

Java.util.Collections.sort(List list)

public static void sort(List list)

This method sorts elementsin the list in ascending order

using natural ordering of elementsin the list.

If we are sorting alist of numbers, we know what natural
ordering means: the less than relation <.

What do we do about an arbitrary list of arbitrary things?
How do we compare them and decide which one should be
before the other?

In order for the method to work, things in the list must be
guaranteed to implement conpar eTo() method.

They way to achieve thisin Javaisto require that they
implement Conpar abl e interface.

Lecture 7: Interfaces 8




Comparable interface

public int conpareTo(Cbject 0)

Thisisthe only method in this interface.

It returns a negative integer if current object isbeforeo in
the natural order, O if they are the same, and positive
integer if it isafter o.

Strings implement Comparable (compareTo() supports
lexicographic ordering of Strings).

Numbers implement Comparable (compareTo() supports
ordering of numbers).

Lecture 7: Interfaces 9

Example: Integers

public int conpareTo(Object 0){

return (this.intValue() -
((I'nteger) o).intValue());

Thisis how we could have implemented compareTo() for
Integers.

Note that we need to cast o to Integer.

Often people return -1 if this object islessthan o, O if they
arethe same, 1if thisis greater than o.

Lecture 7: Interfaces 10




Example: sorting a Vector

For any objects which implement Comparable, in this case
Integers:

Vect or nyVector = new Vector();

nmyVect or . add(new I nteger(5));

myVect or . add(new I nteger(3));

nyVect or . add(new I nteger(7));

Col | ections. sort (myVector);

/1 now nyVector is sorted in natural

/'l order of Integers

Lecture 7: Interfaces 11

Example: iterating through a Vector

* Hereisasimple minded iteration not using an
| t erat or object.

Vect or nyVector = new Vector();

myVect or. add(new I nteger(5));...

for(int i =0; i < myVector.size(); i++){
System out . printl n(
((I'nteger)nmyVector.get(i)).intValue());

}

Lecture 7: Interfaces 12




Test

* 5 minutesto look at the classes and interfaces
 itisuseful to draw aclass hierarchy

* try to answer the questions

» thenI'll go through them and explain

Lecture 7: Interfaces

13

Cartoon Characters

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonChar acter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces

14




Does House have display() method?

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonChar acter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces

15

Yes, House has display() method

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonChar acter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces

16




Does House have moveleft()?

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonChar acter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces

17

Does House have movelLeft()? No!

interface Displayable
abstract class
CartoonPart interface Movable

\ abstract class /

CartoonCharacter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces

18




Does Hunter have images field?

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonChar acter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces 19

Does Hunter have images field? No:
it's declared as private in
CartoonPart, can't access it in Hunter

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonCharacter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces 20

10



Does Hunter have panic() method?

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonChar acter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces

21

Does Hunter have panic() method?
Yes.

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonCharacter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces

22

11



CartoonCharacter for Displayable?

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonChar acter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces

23

CartoonCharacter for Displayable?
Yes!

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonCharacter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces

24

12



CartoonPart for Displayable?

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonChar acter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces

25

CartoonPart for Displayable? Yes!

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonChar acter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces

26

13



Displayable for CartoonCharacter?

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonChar acter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces

27

Displayable for CartoonCharacter?
No!

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonCharacter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces

28

14



Duck for CartoonCharacter?

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonChar acter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces

29

Duck for CartoonCharacter? Yes!

interface Displayable
abstract class
CartoonPart interface M ovable

\ abstract class /

CartoonCharacter

S N—

House Duck Rabbit Wolf Hunter

Lecture 7: Interfaces

30

15



New exercise

* Implement aclass hierarchy
Publication

v
Book Article TechReport

Lecture 7: Interfaces 31

New exercise

» Make sure all publications implement Comparable
* Get alist of publications from the user

 Put them in some collection which implements List
interface (LinkedList, Vector, ArrayList)

» Sort themin alphabetical order using Collections.sort()

Lecture 7: Interfaces 32

16



Previous exercise: Book class

» Writeaclass Book which has fields author, title, publisher,
year, registration number.

* Book constructor takes author, title, publisher (Strings),
year (int).

* Registration number (int) is generated by counting how
many Book objects have been created.

» Books have print() method which prints all the fields.

Lecture 7: Interfaces 33

Book constructor

cl ass Book {
static int count = 1;
private String author, title, publisher;
private int year, nunber;
public Book(String a, String t, String
p, int y) {
this.author = new String(a);
this.title = new String(t);
this. publisher = new String(p);
this.year =vy;
t hi s. nunmber = count ++;

Lecture 7: Interfaces 34

17



Book print()

public void print() {
System out . printl n(aut hor);
Systemout.printin(title);

Systemout. println(publisher + ", " +
year);

Systemout. println("Li brary nunber " +
nunber) ;

} /1 end print
} /1 end cl ass Book

Lecture 7: Interfaces 35

Previous exercise: Textbook

Write a class Textbhook which extends Book.
» Has additional field String course.

Constructor takes author, title, publisher (Strings), year
(int), course (String).

* Registration number is generated by counting how many
Book or Textbook objects have been created.

print() method prints all the fields + course.

Lecture 7: Interfaces 36

18



Textbook

cl ass Text book extends Book ({
private String course;
publ i c Textbook(String a, String t,
String p, int y, String c) {
super(a, t, p, y);
this.course = new String(c);
} /1 end constructor
public void print() {
super.print();
Systemout.println("Course " + course);
} /1 end print
} /1 end cl ass Text book

Lecture 7: Interfaces 37

Summary and further reading

» Abstract classes and interfaces allow Java programmers to
implement methods at the right place in the class hierarchy
and re-use code.

* | covered general principles of extending classes,
implementing interfaces, and using methods
polymorphically, but only atip of the iceberg in Collection
classes and other library methods.

» If you areinterested |ook at Iterators and Comparators.

» For class hierarchies and interfaces, read

http://java.sun.com/docs/book s/'tutorial/java/javaOO/subclasses.html

http://java.sun.com/docs/book s/tutorial/javal/inter pack/inter faces.html

Lecture 7: Interfaces 38

19



