G51PRG:
Introduction to Programming
Second semester
Lecture 9

Natasha Alechina
School of Computer Science & IT
nza@s. nott. ac. uk

Previous lecture: exceptions

» what are exceptions for

* how to define your own exception

» how to get amethod to throw an exception
» how to catch and handle exceptions

Lecture 9: Input/Output

This lecture: 1/0

[/0 in Java

¢ 1/0inJava ¢ Classes necessary to handle I/O are provided by package
« Streams java.io (not the most elegant part of Java).
« Reading, writing, handling exceptions » All examplesin this lecture assume that you add
« Files i nport java.io.*;
* Parsing
Lecture 9: Input/Output Lecture 9: Input/Output
General idea Input and output streams

* When you need to read datainto the program or write it
out of the program, you open a stream between the
program and the source (or destination) of data;

« the stream does reading or writing (it has corresponding
methods) ;

« when it isfinished, you close the stream.

Lecture 9: Input/Output

e Input streams: get data from elsewhere into the program,
for example:

— from afileinto the program
— from keyboard input into the program

« Qutput streams: transferring data from the program to an
outside source, for example:

— writing data out to afile
— sending output to the screen

Lecture 9: Input/Output

Streams

« Stream is a sequence of data.

* Bytestream carries 8 bit items of data, character streams
carry 16 bit Unicode characters.

« Bytestreams are called input and output streams, character
streams readers and writers (just a convention).

Lecture 9: Input/Output 7

Input stream (reader)

Source of
stream ———————————
(for example, | INPutstream > the program
afile)
Lecture 9: Input/Output 8

Output stream (writer)

Destination

Theprogram | output stream (eg. afile)

Lecture 9: Input/Output 9

InputStream class

* InputStream is an abstract class which provides methods for
reading bytes from a particular source.

* Subclasses: BufferedinputStream, Filterl nputStream,
FilelnputStream, ObjectinputStream,...
* Important method:
public abstract int read() throws
| OExcepti on

 reads asingle byte of data and returns the byte that was
read, in the range 0 to 255. The value -1 is returned when
the end of stream is reached. Note that the return typeisint.

Lecture 9: Input/Output 10

OutputStream class

« OutputStream class is an abstract class which provides
methods for writing bytes to a destination.

« Subclasses: BufferedOutputStream, FilterOutputStream,
FileOutputStream, ObjectOutputStream,...

« Important method:

public abstract void wite(int b) throws
| CExcept i on

« writesb (lowest 8 bits of b) as a byte to the destination.
Note the parameter typeisint.

Lecture 9: Input/Output 11

Aside

» System.in, System.out and System.err are byte streams.

e System.inis of type BufferedlnputStream (subclass of
InputStream).

« System.out and System.err are objects of type PrintStream
(subclass of OutputStream) which is deprecated.

Lecture 9: Input/Output 12

Reader class

« Abstract class for input character streams

* Subclasses: BufferedReader, InputStreamReader (extended
by FileReader), StringReader

e Important method:

public int read() throws |COException

¢ returns acharacter read, or -1 if the end of streamis
reached.

Lecture 9: Input/Output 13

Writer class

e Abstract class for output character streams

» Subclasses: BufferedWriter, OutputStreamWriter (extended
by FileWriter), StringWriter.

* Important method:

public void wite(int c) throws
| OExcepti on

» writesasingle character (lower 16 bits of c).

public void wite(String str) throws
| OExcepti on

« writesout al charactersin the string str.

Lecture 9: Input/Output 14

Reading and writing (and exception
handling)

¢ Since InputStream, OutputStream, Reader and Writer are
abstract classes, we do not create instances of those classes
when we need a stream.

* We choose a suitable subclass, depending on whether we
want to read from astring, from atext file, whether we
want abuffered stream, etc.

« read() and write() methods throw a checked | OException, so
we either need to throw this exception, too, or catch and
handleit.

Lecture 9: Input/Output 15

Example: writing to a file

* This method just throws the same exception as write():

public static void StringToFile(String s,
String fileName) throws | OException {

FileWiter fw = new FileWiter(fileNane);
fwwite(s);

fw. close();

}

* FileWriter haswrite(Stri ng s) method whichwrites

out awhole string. We could have written character by
character

Lecture 9: Input/Output 16

Example: writing to a file 2

* Thismethod “handles’ the exception:

public static void StringToFile(String s,
String fil eName) {

try {

FileWiter fw = new FileWiter(fileNane);
fwwite(s);

fw. close();

catch (I OCException e) {

System out. println(“l OException!!!");
}
}

Lecture 9: Input/Output 17

Example:reading from a file

» Character by character method which throws an exception:
public static String fileToString(String
fileNane) throws | OException {
Fi |l eReader fr = new Fil eReader (fil eNane);
String fileContents = new String();
int ¢ = fr.read();
while(c !'=-1) {
fileContents = fileContents + (char)c;
c = fr.read();

fr.close();
return fileContents;

Lecture 9: Input/Output 18

Example:reading from a file 2

 Line by line method which throws an exception:
public static String fileToString(String
fileNane) throws | OException {

Buf f eredReader in = new

Buf f er edReader (new Fi | eReader (fil enane));

String fileContents = new String();

String s;

while((s = in.readLine())!= null) {
fileContents = fileContents + s;

in.close();
return fileContents;

Lecture 9: Input/Output 19

Example:reading from a file 3

* Useof finally to make sure the stream is closed:
public static String fileToString(String
fileNane) throws |OException {
try {
Buf f eredReader in = new
Buf f er edReader (new Fi | eReader (fil enane));
String fileContents = new String();
String s;
while((s = in.readLine())!= null)
fileContents = fileContents + s;
return fileContents;

} finally {
if (int=null) in.close();

Lecture 9: Input/Output 20

Comment on the last example

* Finally clauseis aways executed so if an exception was
thrown in the try clause, the stream will be closed anyway.

¢ The method still throws an |OException because close()
method called in the finally clause throws | OException.

Lecture 9: Input/Output 21

RandomAccessFile

« If you need a stream where you can both read and write, use
random accessfile.

Constructors:

* RandomAccessFile(File file, String node)
- creates arandom access file stream to read from, and
optionally to write to, the file specified by the File
argument. Modeis"rw" or "r".

¢ RandomAccessFile(String name, String
node) - creates arandom access file stream to read from,
and optionally to write to, afile with the specified nane.

Lecture 9: Input/Output 22

RandomAccessFile

Methods:

e int read() (readsabyte)

e void wite(int b) (writesabyte)

e adsoreadChar(), witeChar(), readlnt(),
witelnt(),...

« All throw |OException.

Lecture 9: Input/Output 23

File class

» Nothing to do with streams!
* An abstract representation of file and directory pathnames.

* To create aFile object, passit a String pathname (which can
be absolute or relative path, e.g. just the name of the file).

* For example,
File filel = new File("“Book.java");

File file2 = new
Fil e(“Privat e/ bi bt ex/ Book. java”);

» Understands path separators on various operating systems.

Lecture 9: Input/Output 24

File class: some methods

Provides methods to work with files, for example

bool ean canRead() - if the program can read thisfile
bool ean canWite() -if theprogram canwriteto this
file

bool ean exi sts() -if thereissuch afile

bool ean i sFil e()- isitafile

bool ean isDirectory() - isitadirectory
String[] list() -listsdirectory’sfilesand
subdirectories (as strings)

long | ength() -lengthof thefile

Lecture 9: Input/Output 25

Parsing

* When you are reading something say from afile, itisniceto
be able to split it in meaningful parts/words/tokens and not
just read character by character or line by line.

* For example, an obvious thing isto read word by word or
sentence by sentence.

 For structured files like programs, it is good to know if you
are reading an identifier name, or areserved keyword, or a
method name, and what are the method’ s arguments.

* Ingenerd, parsing involves splitting something in
meaningful parts and understanding how they combine.

Lecture 9: Input/Output 26

Tokenising

Tokenising is a necessary step in parsing: splitting the text
you are parsing in meaningful tokens.

Java has StreamTokenizer class which takes an input stream
or areader and split it into tokens as required (specified by
flags). It understands numbers, program identifiers,
comments etc.

WEe'll be using asimpler class StringTokenizer which
tokenizes strings into tokens separated by specified
delimiters.

Lecture 9: Input/Output 27

StringTokenizer

Constructors:

* public StringTokenizer(String str) -
constructs a string tokenizer for the specified string. The
tokenizer uses the default delimiter set, which is " \t\n\r\f":
the space character, the tab character, the newline character,
the carriage-return character, and the form-feed character.

* public StringTokenizer(String str,
String delim - constructsastring tokenizer for the
specified string. The characters in the delim argument are
the delimiters for separating tokens.

* public StringTokenizer(String str,
String delim bool ean returnDelins)

Lecture 9: Input/Output 28

Examples

StringTokeni zer stl = new

StringTokeni zer (“one, two, three”);

st 1 will separate“ one, two, three” into“one,”,
“two,”, and “three”. They aretokens separated by
white space.

StringTokeni zer st2 = new

StringTokeni zer (“one$t woft hree”, “$£");
st 2 will separate“ one$t woft hr ee” into“one”,
“two”, and “three”. They aretokens separated by $
or£.

Lecture 9: Input/Output 29

Examples

e StringTokeni zer st3 = new
StringTokeni zer (“one$t woft hree”, “$£”,
true);

» st 3 will separate“ one$t woft hree” into“one”,
“$",“two”, “£” and “three”. They aretokens
separated by delimiters $ or £, including delimiters
themselves.

Lecture 9: Input/Output 30

StringTokenizer methods

public String next Token() - returnsnext token.
Throws NoSuchElementException if there are no more
tokens.

int countTokens() - how many timescan
nextToken() method be called before an exception is thrown
publi c bool ean hasMreTokens() -testsif there
are more tokens available from this tokenizer's string.

Lecture 9: Input/Output 31

Example

StringTokeni zer st = new
StringTokeni zer (" one$t woEt hree”, “$£");

whil e (st.hasMreTokens()) {
System out. println(st.next Token());
}
prints the following output:
one
two
three

Lecture 9: Input/Output

Summary and further reading

1/0in Javais quite complicated.

Most introductory textbooks hide this complexity and write
their own 1/O classes, like the CourseMaker’ s Userlnput
class.

I only skimmed the surface of it. If | havetime I’ [l talk more
about saving objects in afile using ObjectStream and
seridization.

For more background, read

http://java.sun.com/docs/book s/tutorial/essential/io.

Lecture 9: Input/Output 33

