
1

G51PRG:
Introduction to Programming

Second semester
Lecture 9

Natasha Alechina

School of Computer Science & IT

nza@cs.nott.ac.uk

Lecture 9: Input/Output 2

Previous lecture: exceptions

• what are exceptions for

• how to define your own exception

• how to get a method to throw an exception

• how to catch and handle exceptions

Lecture 9: Input/Output 3

This lecture: I/O

• I/O in Java

• Streams

• Reading, writing, handling exceptions

• Files

• Parsing

Lecture 9: Input/Output 4

I/O in Java

• Classes necessary to handle I/O are provided by package
java.io (not the most elegant part of Java).

• All examples in this lecture assume that you add

import java.io.*;

Lecture 9: Input/Output 5

General idea

• When you need to read data into the program or write it
out of the program, you open a stream between the
program and the source (or destination) of data;

• the stream does reading or writing (it has corresponding
methods) ;

• when it is finished, you close the stream.

Lecture 9: Input/Output 6

Input and output streams

• Input streams: get data from elsewhere into the program,
for example:

– from a file into the program

– from keyboard input into the program

• Output streams: transferring data from the program to an
outside source, for example:

– writing data out to a file

– sending output to the screen

2

Lecture 9: Input/Output 7

Streams

• Stream is a sequence of data.

• Byte stream carries 8 bit items of data, character streams
carry 16 bit Unicode characters.

• Byte streams are called input and output streams, character
streams readers and writers (just a convention).

Lecture 9: Input/Output 8

Input stream (reader)

Source of
stream

(for example,
a file)

the programinput stream

Lecture 9: Input/Output 9

Output stream (writer)

The program
Destination
(e.g. a file)output stream

Lecture 9: Input/Output 10

InputStream class

• InputStream is an abstract class which provides methods for
reading bytes from a particular source.

• Subclasses: BufferedInputStream, FilterInputStream,
FileInputStream, ObjectInputStream,...

• Important method:

 public abstract int read() throws
IOException

• reads a single byte of data and returns the byte that was
read, in the range 0 to 255. The value -1 is returned when
the end of stream is reached. Note that the return type is int.

Lecture 9: Input/Output 11

OutputStream class

• OutputStream class is an abstract class which provides
methods for writing bytes to a destination.

• Subclasses: BufferedOutputStream, FilterOutputStream,
FileOutputStream, ObjectOutputStream,...

• Important method:

public abstract void write(int b) throws
IOException

• writes b (lowest 8 bits of b) as a byte to the destination.
Note the parameter type is int.

Lecture 9: Input/Output 12

Aside

• System.in, System.out and System.err are byte streams.

• System.in is of type BufferedInputStream (subclass of
InputStream).

• System.out and System.err are objects of type PrintStream
(subclass of OutputStream) which is deprecated.

3

Lecture 9: Input/Output 13

Reader class

• Abstract class for input character streams

• Subclasses: BufferedReader, InputStreamReader (extended
by FileReader), StringReader

• Important method:

public int read() throws IOException

• returns a character read, or -1 if the end of stream is
reached.

Lecture 9: Input/Output 14

Writer class

• Abstract class for output character streams

• Subclasses: BufferedWriter, OutputStreamWriter (extended
by FileWriter), StringWriter.

• Important method:

public void write(int c) throws
IOException

• writes a single character (lower 16 bits of c).

public void write(String str) throws
IOException

• writes out all characters in the string str.

Lecture 9: Input/Output 15

Reading and writing (and exception
handling)
• Since InputStream, OutputStream, Reader and Writer are

abstract classes, we do not create instances of those classes
when we need a stream.

• We choose a suitable subclass, depending on whether we
want to read from a string, from a text file, whether we
want a buffered stream, etc.

• read() and write() methods throw a checked IOException, so
we either need to throw this exception, too, or catch and
handle it.

Lecture 9: Input/Output 16

Example: writing to a file

• This method just throws the same exception as write():

public static void StringToFile(String s,
String fileName) throws IOException {

 FileWriter fw = new FileWriter(fileName);

 fw.write(s);

 fw.close();

}

• FileWriter has write(String s) method which writes
out a whole string. We could have written character by
character

Lecture 9: Input/Output 17

Example: writing to a file 2

• This method “handles” the exception:
public static void StringToFile(String s,
String fileName) {

 try {
 FileWriter fw = new FileWriter(fileName);
 fw.write(s);
 fw.close();
 }
 catch (IOException e) {
 System.out.println(“IOException!!!”);
 }
}

Lecture 9: Input/Output 18

Example:reading from a file

• Character by character method which throws an exception:
public static String fileToString(String
fileName) throws IOException {

 FileReader fr = new FileReader(fileName);
 String fileContents = new String();
 int c = fr.read();
 while(c !=-1) {
 fileContents = fileContents + (char)c;
 c = fr.read();
 }
 fr.close();
 return fileContents;
}

4

Lecture 9: Input/Output 19

Example:reading from a file 2

• Line by line method which throws an exception:
public static String fileToString(String
fileName) throws IOException {

 BufferedReader in = new
 BufferedReader(new FileReader(filename));
 String fileContents = new String();
 String s;
 while((s = in.readLine())!= null) {
 fileContents = fileContents + s;
 }
 in.close();
 return fileContents;
}

Lecture 9: Input/Output 20

Example:reading from a file 3

• Use of finally to make sure the stream is closed:
public static String fileToString(String
fileName) throws IOException {

try {
 BufferedReader in = new
 BufferedReader(new FileReader(filename));
 String fileContents = new String();
 String s;
 while((s = in.readLine())!= null)
 fileContents = fileContents + s;
 return fileContents;
} finally {
 if (in!=null) in.close();
}

Lecture 9: Input/Output 21

Comment on the last example

• Finally clause is always executed so if an exception was
thrown in the try clause, the stream will be closed anyway.

• The method still throws an IOException because close()
method called in the finally clause throws IOException.

Lecture 9: Input/Output 22

RandomAccessFile

• If you need a stream where you can both read and write, use
random access file.

Constructors:

• RandomAccessFile(File file, String mode)
- creates a random access file stream to read from, and
optionally to write to, the file specified by the File
argument. Mode is "rw" or "r".

• RandomAccessFile(String name, String
mode) - creates a random access file stream to read from,
and optionally to write to, a file with the specified name.

Lecture 9: Input/Output 23

RandomAccessFile

Methods:

• int read() (reads a byte)

• void write(int b) (writes a byte)

• also readChar(), writeChar(), readInt(),
writeInt(),...

• All throw IOException.

Lecture 9: Input/Output 24

File class

• Nothing to do with streams!

• An abstract representation of file and directory pathnames.

• To create a File object, pass it a String pathname (which can
be absolute or relative path, e.g. just the name of the file).

• For example,

File file1 = new File(“Book.java”);

File file2 = new
File(“Private/bibtex/Book.java”);

• Understands path separators on various operating systems.

5

Lecture 9: Input/Output 25

File class: some methods

Provides methods to work with files, for example

• boolean canRead() - if the program can read this file

• boolean canWrite() - if the program can write to this
file

• boolean exists() - if there is such a file

• boolean isFile()- is it a file

• boolean isDirectory() - is it a directory

• String[] list() - lists directory’s files and
subdirectories (as strings)

• long length() - length of the file

Lecture 9: Input/Output 26

Parsing

• When you are reading something say from a file, it is nice to
be able to split it in meaningful parts/words/tokens and not
just read character by character or line by line.

• For example, an obvious thing is to read word by word or
sentence by sentence.

• For structured files like programs, it is good to know if you
are reading an identifier name, or a reserved keyword, or a
method name, and what are the method’s arguments.

• In general, parsing involves splitting something in
meaningful parts and understanding how they combine.

Lecture 9: Input/Output 27

Tokenising

• Tokenising is a necessary step in parsing: splitting the text
you are parsing in meaningful tokens.

• Java has StreamTokenizer class which takes an input stream
or a reader and split it into tokens as required (specified by
flags). It understands numbers, program identifiers,
comments etc.

• We’ll be using a simpler class StringTokenizer which
tokenizes strings into tokens separated by specified
delimiters.

Lecture 9: Input/Output 28

StringTokenizer

Constructors:
• public StringTokenizer(String str) -

constructs a string tokenizer for the specified string. The
tokenizer uses the default delimiter set, which is " \t\n\r\f":
the space character, the tab character, the newline character,
the carriage-return character, and the form-feed character.

• public StringTokenizer(String str,
String delim) - constructs a string tokenizer for the
specified string. The characters in the delim argument are
the delimiters for separating tokens.

• public StringTokenizer(String str,
String delim, boolean returnDelims)

Lecture 9: Input/Output 29

Examples

• StringTokenizer st1 = new
StringTokenizer(“one, two, three”);

• st1 will separate “one, two, three” into “one,”,
“two,”, and “three”. They are tokens separated by
white space.

• StringTokenizer st2 = new
StringTokenizer(“one$two£three”, “$£”);

• st2 will separate “one$two£three” into “one”,
“two”, and “three”. They are tokens separated by $
or £.

Lecture 9: Input/Output 30

Examples

• StringTokenizer st3 = new
StringTokenizer(“one$two£three”, “$£”,
true);

• st3 will separate “one$two£three” into “one”,
“$”,“two”, “£” and “three”. They are tokens
separated by delimiters $ or £, including delimiters
themselves.

6

Lecture 9: Input/Output 31

StringTokenizer methods

• public String nextToken() - returns next token.
Throws NoSuchElementException if there are no more
tokens.

• int countTokens() - how many times can
nextToken() method be called before an exception is thrown

• public boolean hasMoreTokens() - tests if there
are more tokens available from this tokenizer's string.

Lecture 9: Input/Output 32

Example

StringTokenizer st = new
StringTokenizer(”one$two£three”, “$£”);

 while (st.hasMoreTokens()) {

 System.out.println(st.nextToken());

 }

 prints the following output:

 one

 two

 three

Lecture 9: Input/Output 33

Summary and further reading

• I/O in Java is quite complicated.

• Most introductory textbooks hide this complexity and write
their own I/O classes, like the CourseMaker’s UserInput
class.

• I only skimmed the surface of it. If I have time I’ll talk more
about saving objects in a file using ObjectStream and
serialization.

• For more background, read

http://java.sun.com/docs/books/tutorial/essential/io.

