
1

G51PRG:
Introduction to Programming

Second semester
Lecture 14

Natasha Alechina

School of Computer Science & IT

nza@cs.nott.ac.uk

Lecture 14: iterators 2

Previous lecture

• Dynamic arrays and lists

• Implementing a dynamic array

• Implementing a very simple linked list in Java

• Inner classes

2

Lecture 14: iterators 3

This lecture

• Iterators

• Synchronised data structures (back to ChatServer)

• Serialisation (saving objects)

Lecture 14: iterators 4

Linked list

• A linked list consists of nodes .

• Each node has a contents fields which stores data (an
Object) and a link field which says what the next item in
the list is. A list has a head field which refers to the head of
the list.

List
head

content link

node

content link

node

null

3

Lecture 14: iterators 5

Linked list implementation

• Need a class Node to represent nodes in a list.

• Need a class List to store the head of the list and
add(Object o), remove(Object o),
get(int i) methods.

Lecture 14: iterators 6

Node class (inner class of List)

 class Node {

 Object contents;

 Node link;

 public Node(Object o, Node next) {

 this.contents = o;

 this.link = next;

 }

}

4

Lecture 14: iterators 7

List class

 public class List{

 Node head;

 class Node {

 // Node class definition

 }

 // the rest of the List class...

 public void add(Object o){

 Node newHead = new Node (o, head);

 head = newHead;

 }

Lecture 14: iterators 8

Adding a node with “d” in it:

• Create a new node and make it link to the head of the list

List
head

“a” null“b” “c”

“d”

5

Lecture 14: iterators 9

Adding a node continued

• Make it the new head:

List

head

“a” null“b” “c”

“d”

Lecture 14: iterators 10

Removing a head

• To remove the head “a”, make its successor the new head:

List
head

“a” null“b” “c”

6

Lecture 14: iterators 11

Removing a head continued

• This results in the following list:

List
head

null“b” “c”

Lecture 14: iterators 12

Removing a node in the middle

• To remove a node with “b”, make the previous node link to
the “b”’s successor:

List
head

“a” null“b” “c”

7

Lecture 14: iterators 13

Removing a node in the middle

• To remove a node with “b”, make the previous node link to
the “b”’s successor:

List
head

“a” null“b” “c”

Lecture 14: iterators 14

Removing a node in the middle

• This results in the following list:

List
head

“a” null“c”

8

Lecture 14: iterators 15

Iterators

• Iterators are objects which know how to walk or iterate
along the list.

• They have

boolean hasNext()

and

Object next() methods.

• We will implement get(int i) using an Iterator: get it
to produce i items in order, and then return the ith item.

Lecture 14: iterators 16

ListIterator class

• We only need a ListIterator because we have a List class.

• ListIterator may need access to (private) fields of a list (to
head field in any case).

• This suggests that it is a good idea to make ListIterator an
inner class of the List class.

9

Lecture 14: iterators 17

Design of ListIterator class

class ListIterator {
// fields? Next node to return

boolean hasNext() {
// are there any more items in the list?
}

Object next() {
// return the next item we have not seen
}

Lecture 14: iterators 18

Which fields

class ListIterator {

 Node currentnode; //node we are looking

 // at; what next() method will return

 public ListIterator() {

 currentnode = head; // List’s field

 }

// note how we have access to the

// enveloping List object’s field head

10

Lecture 14: iterators 19

next()

public Object next() {

 if (currentnode == null) return null;

// actually better to throw an exception!

 Object x = currentnode.contents;

 currentnode = currentnode.link;

 return x;

}

Lecture 14: iterators 20

hasNext()

 public boolean hasNext() {

 return (currentnode != null);

}

11

Lecture 14: iterators 21

In the List class ...

• Now we can add a method to the List class:

public ListIterator iterator() {

 return new ListIterator();

}

Lecture 14: iterators 22

get(int i)

• Also in the List class...

public Object get(int i) {

 ListIterator li = iterator();

 if (i < 0) throw new
ArrayIndexOutOfBoundsException();

// (better a new Exception class)

 for (int j = 0; j <= i-1; j++) {

 li.next(); // skip items at 0…i-1
 }
 return li.next();
}

12

Lecture 14: iterators 23

Collections and concurrent access

• Quite often, several processes need to access the same list
or array at the same time.

• This may potentially cause problems; we’ll study them on
an example of the ChatServer program from Java Gently.

Lecture 14: iterators 24

Synchronised methods

• If a class A has a synchronised method amethod(), then
any thread which needs to invoke this method on an
instance x of A:

x.amethod()

 has to obtain a lock on x. If another thread has the lock,
the thread waits.

• When the thread has a lock, no other thread can invoke a
synchronised method on x. (Can invoke unsynchronised
methods).

• Similarly for synchronised static methods, only the lock is
at the class level.

13

Lecture 14: iterators 25

 ChatServer

public class ChatServer {

 private static LinkedList clientList;

 static synchronized void
broadcast(String s, String name) { … }

 static synchronized void remove(Socket
client) { … }

 public static void main(String[] args) {

// listen for connections

// for each new client Socket,
clientList.add(client)

// create a ChatHandler thread for the
client

Lecture 14: iterators 26

 ChatHandler

class ChatHandler {

 private Socket toClient;

// get the client’s name

// loop reading messages from the

// client’s input stream

ChatServer.broadcast(message, name);

// if the client types “BYE”

ChatServer.remove(toClient);

toClient.close();

14

Lecture 14: iterators 27

 Why use synchronized?

• It is possible that several clients simultaneously ask to be
removed from the list or to broadcast a message.

• What may happen if several threads have a go at the list in
an interleaved fashion?

• And is it a good idea to not lock the list while adding a
client?

Lecture 14: iterators 28

 Race hazard with remove()

• Suppose that remove() is not synchronised, and two
threads can try to remove clients from a list at the same
time.

• Suppose the list is a LinkedList implemented as we did it
in the last lecture.

• One thread is trying to remove “a” from the list, another
thread is trying to remove “b” from the list.

List
head

“a” null“b” “c”

15

Lecture 14: iterators 29

 Ideally, to remove b

List
head

“a” null“b” “c”

Lecture 14: iterators 30

 Resulting in:

List
head

“a” null“c”

16

Lecture 14: iterators 31

 And to remove a:

List
head

“a” null“c”

Lecture 14: iterators 32

 Resulting in:

List
head

null“c”

17

Lecture 14: iterators 33

 With two threads racing:

List
head

“a” null“b” “c”

threadB: a.link = a.link.link

threadA: head = head.link

Lecture 14: iterators 34

 Resulting in:

List
head

null“b” “c”

threadB: remove of “b” is lost

18

Lecture 14: iterators 35

Interaction of broadcast() and remove()

• If broadcast() and remove() are
unsynchronised, the following bad thing can happen:

• thread1 is doing broadcast(), that is going through the list,
opening a stream to each socket and sending a string;

• thread2 which is a handler for some client X called
remove(), so client X’s socket is bypassed in the list;

• thread1 already grabbed the reference to Client X’s socket;

• thread2 closes the socket of X;

• thread1 tries to open a stream to a closed socket, exception
is thrown and the program falls over.

Lecture 14: iterators 36

Is unsyncronised add() safe?

• Now check if the Java Gently program is actually bullet-

proof: can anything bad happen because a client may be

added when a remove is in progress?

• Recall that ChatServer does not lock the list when it calls

clientList.add(client).

19

Lecture 14: iterators 37

Adding “d” and removing “a”

• ThreadD links “d” to the head of the list:

List
head

“a” null“b” “c”

“d”

Lecture 14: iterators 38

Adding “d” and removing “a”

• ThreadA reassigns the head to be “b”:

List
head

“a” null“b” “c”

“d”

20

Lecture 14: iterators 39

Adding “d” and removing “a”

• ThreadD completes insertion by making “d” the new head:

List
head

“a” null“b” “c”

“d”

Lecture 14: iterators 40

Result: lost update

• Java Gently implementation is not totally safe: ChatServer
may be adding clients when some thread is trying to do
remove().

• Since ChatServer does not bother to lock the list, the thread
which is doing remove gets the lock and starts removing
the client.

• This update may be lost because of ChatServer’s actions.

• Conclusion: add() method should be synchronised.

• The easiest is to use a synchronised collection for the
clientList.

21

Lecture 14: iterators 41

Synchronised collections

• Synchronised collections only allow their methods to be
called by a single thread at a time.

• They are thread-safe: no undesirable race hazards happen.

• The only two examples in java.util:
– Vector

– Hashtable

Lecture 14: iterators 42

Non synchronised collections

• All other Collections, including java.util.LinkedList.

• To get a synchronised collection, use synchronization
wrappers from Collections class:

public static Collection
synchronizedCollection(Collection c);

public static Set synchronizedSet(Set s);

public static List synchronizedList(List
list);

etc.

22

Lecture 14: iterators 43

Example

• Suppose oldlist is of type java.util.LinkedList:

List synclist =
Collections.synchronizedList(oldlist);

• Now we have a synchronized list synclist.

Lecture 14: iterators 44

Iterating over synchronised collection

• You still need to lock the list when you are iterating over
it:

synchronized(synclist) {

 Iterator i = synclist.iterator();

 while (i.hasNext())

 System.out.println(i.next());

 }

• This is because iterator makes multiple calls into the
collection (it is unlocked between the calls to next()).

23

Lecture 14: iterators 45

Serialisation

• We know how to write characters and Strings into a file.
What if we need to save an object (e.g. a list).

• Reading and writing objects (saving them to a file, or
passing them to a different machine in distributed
computing) requires representing them in a serialized form
(as a sequence of bytes). Then they can be passed along an

ObjectInputStream and ObjectOutputStream.

• In order to be serializable, an object should implement
Serializable interface (an empty marker interface).

Lecture 14: iterators 46

How to serialize your object

• State that it implements io.Serializable interface.

• It is a marker interface; no methods go with it.

public class List implements Serializable

• If it has Object type fields, they should be instances of
serializable classes (e.g. Node).

class Node implements Serializable

24

Lecture 14: iterators 47

How to serialize your object 2

 ObjectOutputStream out =

 new ObjectOutputStream (

 new FileOutputStream("listtest"));

 out.writeObject(mylist);

 out.close();

 ObjectInputStream in =

 new ObjectInputStream (

 new FileInputStream("listtest"));

 copy = (List) in.readObject();

Lecture 14: iterators 48

Summary

• For iterators, see Sun tutorial

http://java.sun.com/docs/books/tutorial/collections/

interfaces/collection.html

• For serialization, see Sun tutorial

http://java.sun.com/docs/books/tutorial/essential/io/

serialization.html

• For synchronised collections, see Sun tutorial

http://java.sun.com/docs/books/tutorial/collections/

implementations/wrapper.html and http://java.sun.com/
docs/books/tutorial/essential/threads/multithreaded.html

