G51PRG:
Introduction to Programming

Second semester
Lecture 14

Natasha Alechina
School of Computer Science & IT
nza@s. nott. ac. uk

Previous lecture

* Dynamic arrays and lists

* |Implementing a dynamic array

* Implementing avery simple linked list in Java
* Inner classes

Lecture 14: iterators

This lecture

* |terators
» Synchronised data structures (back to ChatServer)
» Serialisation (saving objects)

Lecture 14: iterators 3

Linked list

* A linked list consists of nodes .

» Each node has a contents fields which stores data (an
Object) and alink field which says what the next item in
thelistis. A list has a head field which refers to the head of
thelist.

head
.—’ content | link

node node

content | link— null

\ 4

Lecture 14: iterators 4

Linked list implementation

* Need aclass Nodeto represent nodesin alist.

* Need aclassList to store the head of thelist and
add(Qbj ect 0), renove(oject o),
get (int i) methods.

Lecture 14: iterators

Node class (inner class of List)

cl ass Node {
(bj ect contents;
Node | i nk;

publ i c Node((Qbject o, Node next) {
this.contents = o;
this.link = next;

}

Lecture 14: iterators

List class

public class List{

Node head;

cl ass Node {

// Node class definition
}

/'l the rest of the List class...
public void add(Object 0){

Node newHead = new Node (o0, head);
head = newHead;

}

Lecture 14: iterators 7

Adding a node with “d” in it:

* Create anew node and make it link to the head of thelist

\ 4
S
\ 4
o

»null

. head
113 d’

Lecture 14: iterators 8

Adding a node continued

* Makeit the new head:

113 d’ > 113 bn > 113 Cn > nu”

Lecture 14: iterators 9

Removing a head

* Toremovethe head “&’, make its successor the new head:

113 d’ > 113 bn > 113 Cn > nu”

Lecture 14: iterators 10

Removing a head continued

* Thisresultsin the following list:

head
“b” »C’ »null

Lecture 14: iterators 11

Removing a node in the middle

* To remove anode with “b”, make the previous node link to
the “b™’ s successor:

\ 4
=
\ 4
o

»null

. head
113 d’

Lecture 14: iterators 12

Removing a node in the middle

* To remove anode with “b”, make the previous node link to
the “b™’ s successor:

head /\
.—» @ A ‘o >l

Lecture 14: iterators 13

Removing a node in the middle

* Thisresultsin the following list:

head /\
.—» “d| “¢"| ———»null

Lecture 14: iterators 14

Ilterators

* |terators are objects which know how to walk or iterate
along the list.

* They have

bool ean hasNext ()
and

bj ect next () methods.

* Wewill implement get (i nt 1) using an Iterator: get it
to producei itemsin order, and then return the i thitem.

Lecture 14: iterators 15

Listlterator class

* Weonly need a Listlterator because we have aList class.

 Listlterator may need access to (private) fields of alist (to
head field in any case).

» Thissuggeststhat it isagood ideato make Listlterator an
inner class of the List class.

Lecture 14: iterators 16

Design of Listlterator class

class Listlterator {
/1] fields? Next node to return

bool ean hasNext () {
/1l are there any nore itens in the list?

}

bj ect next () {
// return the next item we have not seen

}

Lecture 14: iterators 17

Which fields

class Listlterator {
Node currentnode; //node we are | ooking
/1 at; what next() nmethod will return

public Listlterator() {
currentnode = head; // List's field

}

/'l note how we have access to the
/'l envel oping List object’s field head

Lecture 14: iterators 18

next()

public Object next() {
if (currentnode == null) return null;

/'l actually better to throw an excepti on!
bj ect x = currentnode. contents;
currentnode = currentnode. |ink;

return Xx;

}

Lecture 14: iterators

19

hasNext()

publ i c bool ean hasNext () ({
return (currentnode !'= null);

Lecture 14: iterators

20

10

In the List class ...

* Now we can add a method to the List class:
public Listlterator iterator() {
return new Listlterator();

Lecture 14: iterators

21

get(int 1)

e AlsointhelList class...
publicObject get(int i) {
Listlterator |i = iterator();
if (i <0) throw new
Arrayl ndexQut O BoundsException();
/'l (better a new Exception class)
for (int j =0; j <=1i-1; j++) {
li.next(); // skipitenms at 0.i-1
}

return |i.next();

}

Lecture 14: iterators

22

11

Collections and concurrent access

» Quite often, several processes need to access the same list
or array at the sametime.

» Thismay potentially cause problems; we'll study them on
an example of the ChatServer program from Java Gently.

Lecture 14: iterators 23

Synchronised methods

» |If aclass A hasasynchronised method anet hod() , then
any thread which needs to invoke this method on an
instance x of A:

x. amet hod()

has to obtain alock on x. If another thread has the lock,
the thread waits.

* When the thread has alock, no other thread can invoke a
synchronised method on x. (Can invoke unsynchronised
methods).

» Similarly for synchronised static methods, only the lock is
at the classlevel.

Lecture 14: iterators 24

12

ChatServer

public class Chat Server {
private static LinkedList clientList;

static synchroni zed void
broadcast(String s, String nanme) { ...}

static synchroni zed void renove(Socket
client) { ...}

public static void main(String[] args) {
/1l listen for connections

/! for each new client Socket,
clientList.add(client)
// create a ChatHandler thread for the

client
Lecture 14: iterators 25

ChatHandler

cl ass Chat Handl er {

private Socket toCient;
/'l get the client’s nane
/'l 1oop readi ng nmessages fromthe
/1l client’s input stream

Chat Server. broadcast (nmessage, nane);
/1 if the client types “BYE’

Chat Server.renove(toC ient);
toCient.close();

Lecture 14: iterators 26

13

Why use synchronized?

* Itispossiblethat several clients simultaneously ask to be
removed from the list or to broadcast a message.

» What may happen if several threads have ago at thelist in
an interleaved fashion?

* Andisit agood ideato not lock the list while adding a
client?

Lecture 14: iterators 27

Race hazard with remove()

» Supposethat r enove() isnot synchronised, and two
threads can try to remove clients from alist at the same
time.

» SupposethelistisaLinkedList implemented as we did it
in the last lecture.

* Onethread istrying to remove “a’ from the list, another
thread is trying to remove “b” from the list.

. head
113 d’

\ 4
S
\ 4
o

»null

Lecture 14: iterators 28

14

|deally, to remove b

“ Cﬂ 1 5 nu| |

Lecture 14: iterators 29

Resulting in:

head
.—» “a'| /] “¢’| ——>null

Lecture 14: iterators 30

15

And to remove a;

al “¢’| ——>null

/’
Locture 14 edtors a

Resulting in:
head

“¢’| ——null

/’
Locture 14 edtors 2

16

With two threads racing:

threadA: head = head. | i nk
threadB:a.link = a.link.link

—null
Lecture 14: iterators 33
Resulting in:
threadB: remove of “b” islost
[13 b” : __» nul |
Lecture 14: iterators 34

17

Interaction of broadcast() and remove()

* If broadcast() and renove() are
unsynchronised, the following bad thing can happen:

« threadl is doing broadcast(), that is going through the list,
opening a stream to each socket and sending a string;

» thread2 which isahandler for some client X called
remove(), so client X’ s socket is bypassed in the list;

 threadl aready grabbed the reference to Client X’ s socket;
* thread2 closes the socket of X;

* threadl tries to open a stream to a closed socket, exception
isthrown and the program falls over.

Lecture 14: iterators 35

Is unsyncronised add() safe?

* Now check if the Java Gently program is actually bullet-
proof: can anything bad happen because a client may be
added when aremoveisin progress?

» Recall that ChatServer does not lock the list when it calls
clientList.add(client).

Lecture 14: iterators 36

18

Adding “d” and removing “a”

¢ ThreadD links“d" to the head of thelist:

head
.—»“a” »“b" »“C »null
Lecture 14: iterators 37
Adding “d” and removing “a”
» ThreadA reassigns the head to be “b”:
ld” \
“a »“b" »“C” »null

Lecture 14: iterators 38

Adding “d” and removing “a”

» ThreadD completesinsertion by making “d” the new head:

head
113 d’ : 113 b” : 113 C” : null

Lecture 14: iterators 39

Result: lost update

» Java Gently implementation is not totally safe: ChatServer
may be adding clients when some thread is trying to do
remove().

* Since ChatServer does not bother to lock the list, the thread
which is doing remove gets the lock and starts removing
theclient.

» Thisupdate may be lost because of ChatServer’s actions.
» Conclusion: add() method should be synchronised.

» Theeasiestisto use asynchronised collection for the
clientList.

Lecture 14: iterators 40

20

Synchronised collections

» Synchronised collections only alow their methods to be
called by asinglethread at atime.

» They are thread-safe: no undesirable race hazards happen.

» Theonly two examplesin java.util:
— Vect or
— Hasht abl e

Lecture 14: iterators 41

Non synchronised collections

» All other Collections, including java.util.LinkedList.

» To get asynchronised collection, use synchronization
wrappers from Collections class:

public static Collection
synchroni zedCol | ecti on(Col | ection c);

public static Set synchroni zedSet (Set s);

public static List synchronizedLi st (List
list);

etc.

Lecture 14: iterators 42

21

Example

» Supposeol dl i st isof typejavautil.LinkedList:

Li st synclist =
Col I ecti ons. synchroni zedLi st (ol dlist);

* Now we have asynchronized list syncl i st .

Lecture 14: iterators 43

Iterating over synchronised collection

* You still need to lock the list when you are iterating over
it:
synchroni zed(synclist) {
Iterator i = synclist.iterator();
while (i.hasNext())
Systemout.println(i.next());

}

» Thisisbecauseiterator makes multiple callsinto the
collection (it is unlocked between the calls to next()).

Lecture 14: iterators 44

22

Serialisation

* We know how to write characters and Strings into afile.
What if we need to save an object (e.g. alist).

» Reading and writing objects (saving them to afile, or
passing them to a different machine in distributed
computing) requires representing them in a serialized form
(as a sequence of bytes). Then they can be passed along an

bj ect | nput St ream and Obj ect Qut put St ream

 |Inorder to be serializable, an object should implement
Serializable interface (an empty marker interface).

Lecture 14: iterators 45

How to serialize your object

o Statethat it implementsio.Serializable interface.
» Itisamarker interface; no methods go with it.
public class List inplenments Serializable

 If it has Object type fields, they should be instances of
serializable classes (e.g. Node).

cl ass Node inplenents Serializable

Lecture 14: iterators 46

23

How to serialize your object 2

oj ect Qut put St ream out =
new Obj ect Qut put Stream (
new Fi |l eQut put Stream("listtest"));
out.witeQoject(nylist);
out . cl ose();
Qoj ectlnputStreamin =
new Qbj ect | nput St ream (
new Fil el nput Strean("listtest"));
copy = (List) in.readObject();

Lecture 14: iterators

47

Summary

* For iterators, see Sun tutorial
http://java.sun.com/docs/books/tutorial/collections/
interfaces/collection.html

» For seridlization, see Sun tutorial
http://java.sun.com/docs/books/tutorial/essential/io/
serialization.html

 For synchronised collections, see Sun tutorial
http://java.sun.com/docs/books/tutorial/collections/

implementati ons/wrapper.html and http://java.sun.com/
docs/books/tutorial/essential/threads/multithreaded.html

Lecture 14: iterators

24

