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Previous lecture

* Dynamic arrays and lists

* |Implementing a dynamic array

* Implementing avery simple linked list in Java
* Inner classes
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This lecture

* |terators
» Synchronised data structures (back to ChatServer)
» Serialisation (saving objects)
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Linked list

* A linked list consists of nodes .

» Each node has a contents fields which stores data (an
Object) and alink field which says what the next item in
thelistis. A list has a head field which refers to the head of
thelist.

head
.—’ content | link

node node

content | link— null

\ 4
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Linked list implementation

* Need aclass Nodeto represent nodesin alist.

* Need aclassList to store the head of thelist and
add( Qbj ect 0), renove(oject o),
get (int i) methods.
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Node class (inner class of List)

cl ass Node {
(bj ect contents;
Node | i nk;

publ i c Node((Qbject o, Node next) {
this.contents = o;
this.link = next;

}

Lecture 14: iterators




List class

public class List{

Node head;

cl ass Node {

// Node class definition
}

/'l the rest of the List class...
public void add(Object 0){

Node newHead = new Node (o0, head);
head = newHead;

}
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Adding a node with “d” in it:

* Create anew node and make it link to the head of thelist

\ 4
S
\ 4
o

»null

. head
113 d’
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Adding a node continued

* Makeit the new head:

113 d’ > 113 bn > 113 Cn > nu”
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Removing a head

* Toremovethe head “&’, make its successor the new head:

113 d’ > 113 bn > 113 Cn > nu”
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Removing a head continued

* Thisresultsin the following list:

head
“b” »C’ »null
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Removing a node in the middle

* To remove anode with “b”, make the previous node link to
the “b™’ s successor:

\ 4
=
\ 4
o

»null

. head
113 d’
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Removing a node in the middle

* To remove anode with “b”, make the previous node link to
the “b™’ s successor:

head /\
.—» @ A ‘o >l
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Removing a node in the middle

* Thisresultsin the following list:

head /\
.—» “d| “¢"| ———»null
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Ilterators

* |terators are objects which know how to walk or iterate
along the list.

* They have

bool ean hasNext ()
and

bj ect next () methods.

* Wewill implement get (i nt 1) using an Iterator: get it
to producei itemsin order, and then return the i thitem.
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Listlterator class

* Weonly need a Listlterator because we have aList class.

 Listlterator may need access to (private) fields of alist (to
head field in any case).

» Thissuggeststhat it isagood ideato make Listlterator an
inner class of the List class.
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Design of Listlterator class

class Listlterator {
/1] fields? Next node to return

bool ean hasNext () {
/1l are there any nore itens in the list?

}

bj ect next () {
// return the next item we have not seen

}
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Which fields

class Listlterator {
Node currentnode; //node we are | ooking
/1 at; what next() nmethod will return

public Listlterator() {
currentnode = head; // List's field

}

/'l note how we have access to the
/'l envel oping List object’s field head
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next()

public Object next() {
if (currentnode == null) return null;

/'l actually better to throw an excepti on!
bj ect x = currentnode. contents;
currentnode = currentnode. |ink;

return Xx;

}
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hasNext()

publ i c bool ean hasNext () ({
return (currentnode !'= null);
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In the List class ...

* Now we can add a method to the List class:
public Listlterator iterator() {
return new Listlterator();
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get(int 1)

e AlsointhelList class...
publicObject get(int i) {
Listlterator |i = iterator();
if (i <0) throw new
Arrayl ndexQut O BoundsException();
/'l (better a new Exception class)
for (int j =0; j <=1i-1; j++) {
li.next(); // skipitenms at 0.i-1
}

return |i.next();

}
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Collections and concurrent access

» Quite often, several processes need to access the same list
or array at the sametime.

» Thismay potentially cause problems; we'll study them on
an example of the ChatServer program from Java Gently.
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Synchronised methods

» |If aclass A hasasynchronised method anet hod( ) , then
any thread which needs to invoke this method on an
instance x of A:

x. amet hod()

has to obtain alock on x. If another thread has the lock,
the thread waits.

* When the thread has alock, no other thread can invoke a
synchronised method on x. (Can invoke unsynchronised
methods).

» Similarly for synchronised static methods, only the lock is
at the classlevel.
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ChatServer

public class Chat Server {
private static LinkedList clientList;

static synchroni zed void
broadcast(String s, String nanme) { ...}

static synchroni zed void renove( Socket
client) { ...}

public static void main(String[] args) {
/1l listen for connections

/! for each new client Socket,
clientList.add(client)
// create a ChatHandler thread for the

client
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ChatHandler

cl ass Chat Handl er {

private Socket toCient;
/'l get the client’s nane
/'l 1oop readi ng nmessages fromthe
/1l client’s input stream

Chat Server. broadcast (nmessage, nane);
/1 if the client types “BYE’

Chat Server.renove(toC ient);
toCient.close();
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Why use synchronized?

* Itispossiblethat several clients simultaneously ask to be
removed from the list or to broadcast a message.

» What may happen if several threads have ago at thelist in
an interleaved fashion?

* Andisit agood ideato not lock the list while adding a
client?

Lecture 14: iterators 27

Race hazard with remove()

» Supposethat r enove() isnot synchronised, and two
threads can try to remove clients from alist at the same
time.

» SupposethelistisaLinkedList implemented as we did it
in the last lecture.

* Onethread istrying to remove “a’ from the list, another
thread is trying to remove “b” from the list.

. head
113 d’

\ 4
S
\ 4
o

»null
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|deally, to remove b

“ Cﬂ 1 5 nu| |
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Resulting in:

head
.—» “a'| /] “¢’| ——>null
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And to remove a;

al “¢’| ——>null

/’
Locture 14 edtors a

Resulting in:
head

“¢’| ——null

/’
Locture 14 edtors 2
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With two threads racing:

threadA: head = head. | i nk
threadB:a.link = a.link.link

—null
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Resulting in:
threadB: remove of “b” islost
[13 b” : __» nul |
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Interaction of broadcast() and remove()

* If broadcast() and renove() are
unsynchronised, the following bad thing can happen:

« threadl is doing broadcast(), that is going through the list,
opening a stream to each socket and sending a string;

» thread2 which isahandler for some client X called
remove(), so client X’ s socket is bypassed in the list;

 threadl aready grabbed the reference to Client X’ s socket;
* thread2 closes the socket of X;

* threadl tries to open a stream to a closed socket, exception
isthrown and the program falls over.
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Is unsyncronised add() safe?

* Now check if the Java Gently program is actually bullet-
proof: can anything bad happen because a client may be
added when aremoveisin progress?

» Recall that ChatServer does not lock the list when it calls
clientList.add(client).
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Adding “d” and removing “a”

¢ ThreadD links“d" to the head of thelist:

head
.—»“a” »“b" »“C »null
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Adding “d” and removing “a”
» ThreadA reassigns the head to be “b”:
ld” \
“a »“b" »“C” »null
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Adding “d” and removing “a”

» ThreadD completesinsertion by making “d” the new head:

head
113 d’ : 113 b” : 113 C” : null
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Result: lost update

» Java Gently implementation is not totally safe: ChatServer
may be adding clients when some thread is trying to do
remove().

* Since ChatServer does not bother to lock the list, the thread
which is doing remove gets the lock and starts removing
theclient.

» Thisupdate may be lost because of ChatServer’s actions.
» Conclusion: add() method should be synchronised.

» Theeasiestisto use asynchronised collection for the
clientList.
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Synchronised collections

» Synchronised collections only alow their methods to be
called by asinglethread at atime.

» They are thread-safe: no undesirable race hazards happen.

» Theonly two examplesin java.util:
— Vect or
— Hasht abl e
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Non synchronised collections

» All other Collections, including java.util.LinkedList.

» To get asynchronised collection, use synchronization
wrappers from Collections class:

public static Collection
synchroni zedCol | ecti on(Col | ection c);

public static Set synchroni zedSet (Set s);

public static List synchronizedLi st (List
list);

etc.
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Example

» Supposeol dl i st isof typejavautil.LinkedList:

Li st synclist =
Col I ecti ons. synchroni zedLi st (ol dlist);

* Now we have asynchronized list syncl i st .
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Iterating over synchronised collection

* You still need to lock the list when you are iterating over
it:
synchroni zed(synclist) {
Iterator i = synclist.iterator();
while (i.hasNext())
Systemout.println(i.next());

}

» Thisisbecauseiterator makes multiple callsinto the
collection (it is unlocked between the calls to next()).
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Serialisation

* We know how to write characters and Strings into afile.
What if we need to save an object (e.g. alist).

» Reading and writing objects (saving them to afile, or
passing them to a different machine in distributed
computing) requires representing them in a serialized form
(as a sequence of bytes). Then they can be passed along an

bj ect | nput St ream and Obj ect Qut put St ream

 |Inorder to be serializable, an object should implement
Serializable interface (an empty marker interface).
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How to serialize your object

o Statethat it implementsio.Serializable interface.
» Itisamarker interface; no methods go with it.
public class List inplenments Serializable

 If it has Object type fields, they should be instances of
serializable classes (e.g. Node).

cl ass Node inplenents Serializable
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How to serialize your object 2

oj ect Qut put St ream out =
new Obj ect Qut put Stream (
new Fi |l eQut put Stream("listtest"));
out.witeQoject(nylist);
out . cl ose();
Qoj ectlnputStreamin =
new Qbj ect | nput St ream (
new Fil el nput Strean("listtest"));
copy = (List) in.readObject();
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Summary

* For iterators, see Sun tutorial
http://java.sun.com/docs/books/tutorial/collections/
interfaces/collection.html

» For seridlization, see Sun tutorial
http://java.sun.com/docs/books/tutorial/essential/io/
serialization.html

 For synchronised collections, see Sun tutorial
http://java.sun.com/docs/books/tutorial/collections/

implementati ons/wrapper.html and http://java.sun.com/
docs/books/tutorial/essential/threads/multithreaded.html
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