G51PRG:
Introduction to Programming
Second semester
Lecture 14

Natasha Alechina
School of Computer Science & IT
nza@s. nott. ac. uk

Previous lecture

e Dynamic arrays and lists

* Implementing a dynamic array

* Implementing avery simple linked list in Java
* Inner classes

Lecture 14: iterators 2

This lecture
¢ |terators

« Synchronised data structures (back to ChatServer)
 Serialisation (saving objects)

Lecture 14: iterators

Linked list

« A linked list consists of nodes .

« Each node has a contents fields which stores data (an
Object) and alink field which sayswhat the next itemin
thelistis. A list has a head field which refers to the head of
thelist.

head
content | link——> content | link——> null

node node

Lecture 14: iterators 4

Linked list implementation

* Need aclass Node to represent nodesin alist.

* Need aclass List to store the head of thelist and
add(oj ect 0), renopve(Object o),
get (int i) methods.

Lecture 14: iterators

Node class (inner class of List)

cl ass Node {
Obj ect contents;
Node |i nk;

public Node(Cbject o, Node next) {
this.contents = o;
this.link = next;

}

Lecture 14: iterators

List class

public class List{

Node head;

cl ass Node {

/1 Node class definition
}

/1 the rest of the List class...
public void add(bject o0){

Node newHead = new Node (o, head);
head = newHead;

}

Lecture 14: iterators 7

Adding a node with “d” in it:

« Create anew node and make it link to the head of the list

o]\

head
.—> “a b’ »“C"| ——>null

Lecture 14: iterators 8

Adding a node continued

e Makeit the new head:

Removing a head

* Toremovethe head “a’, make its successor the new head:

“gr
e/ 1\

head

“a >0 »"C" »>null “a >0’ »“C"| ——null

Lecture 14: iterators 9 Lecture 14: iterators 10

Removing a head continued Removing a node in the middle
* Thisresultsin the following list: * Toremove anode with “b”, make the previous node link to
the“b"’ s successor:

head head

“b" >“C" | ——null . > > b’ > “C »>null

Lecture 14: iterators 1

Lecture 14: iterators 12

Removing a node in the middle

* Toremove anode with “b”, make the previous node link to
the“b"’ s successor:

head
.—' IS “b" »“c’ »>null

Lecture 14: iterators 13

Removing a node in the middle

¢ Thisresultsin the following list:

head
.—» e “¢"| ———null

Lecture 14: iterators 14

Iterators

 Iterators are objects which know how to walk or iterate
along thelist.

¢ They have

bool ean hasNext ()

and

oj ect next () methods.

« Wewill implement get (i nt i) using an Iterator: get it
to producei itemsin order, and then return the i thitem.

Lecture 14: iterators 15

Listlterator class

* Weonly need a Listlterator because we have aList class.

« Listlterator may need accessto (private) fields of alist (to
head fieldinany case).

» Thissuggeststhat it is agood ideato make Listlterator an
inner class of the List class.

Lecture 14: iterators 16

Design of Listlterator class

class Listlterator {
/1 fields? Next node to return

bool ean hasNext () {
/] are there any nore itens in the list?

}

oj ect next () {
/] return the next itemwe have not seen

}

Lecture 14: iterators 17

Which fields

class Listlterator {
Node currentnode; //node we are |ooking
/1 at; what next() nmethod will return

public Listlterator() {
currentnode = head; // List's field
}
/1 note how we have access to the
/1 envel oping List object’s field head

Lecture 14: iterators 18

next() hasNext()

public Object next() { publ i c bool ean hasNext () {

if (currentnode == null) return null; return (currentnode !'= null);
/] actually better to throw an exception! }

Obj ect x = currentnode. contents;

currentnode = currentnode. link;

return x;
}

Lecture 14: iterators 19 Lecture 14: iterators 20

In the List class ... get(int i)

* Now we can add a method to the List class:
public Listlterator iterator() {
return new Listlterator();

Lecture 14: iterators 21

* AlsointhelList class...
publicOoject get(int i) {
Listlterator li = iterator();
if (i <0) throw new
Arrayl ndexQut Of BoundsException();
/1 (better a new Exception class)
for (int j =0; j <=1i-1; j++) {
li.next(); // skipitems at 0.i-1
}

return li.next();

}

Lecture 14: iterators 22

Collections and concurrent access

« Quite often, severa processes need to access the same list
or array at the same time.

* Thismay potentialy cause problems; we'll study them on
an example of the ChatServer program from Java Gently.

Lecture 14: iterators 23

Synchronised methods

e If aclass A hasasynchronised method anet hod() , then
any thread which needs to invoke this method on an
instance x of A:

x. amet hod()
has to obtain alock on x. If another thread has the lock,
the thread waits.

* When the thread has alock, no other thread can invoke a
synchronised method on x. (Can invoke unsynchronised
methods).

« Similarly for synchronised static methods, only thelock is
at the classlevel.

Lecture 14: iterators 24

ChatServer

public class Chat Server {
private static LinkedList clientList;

static synchronized void
broadcast (String s, String name) { ...}
static synchronized void renpve(Socket
client) {
public static void main(String[] args) {
/1 listen for connections

/1 for each new client Socket,
clientList.add(client)
/] create a ChatHandl er thread for the

client
Lecture 14: iterators 25

ChatHandler

cl ass Chat Handl er {

private Socket todient;
/1 get the client’s nane
/1 1 oop reading nessages fromthe
/1l client’s input stream
Chat Server. broadcast (nessage, nane);
/1 if the client types “BYE’
Chat Server.remove(todient);
toClient.close();

Lecture 14: iterators 26

Why use synchronized?

 Itispossiblethat several clients simultaneously ask to be
removed from the list or to broadcast a message.

* What may happen if severa threads have ago at thelist in
an interleaved fashion?

* Andisit agood ideato not lock the list while adding a
client?

Lecture 14: iterators 27

Race hazard with remove()

* Supposethat r enpbve() isnot synchronised, and two
threads can try to remove clients from alist at the same
time.

» SupposethelistisaLinkedList implemented as we did it
in the last lecture.

* Onethread istrying to remove “a’ from the list, another
thread istrying to remove “b” from the list.

head
.—> “a b’ »“C"| ——>null

Lecture 14: iterators 28

Ideally, to remove b

head
.—» @ “b’ ¥c’| ——nul

Lecture 14: iterators 29

Resulting in:

head
.—» “a@ “¢’| ——null

Lecture 14: iterators 30

And to remove a;:

Resulting in:

head head
i “¢"| ——null “¢’"| ——null
Lecture 14: iterators 31 Lecture 14: iterators 32
With two threads racing: Resulting in:
threadA: head = head. | i nk .
threadB: remove of “b” islost
threadB: a. i nk = a.link.link
head head
4 “b” ¥ c’ »null “b” »"“C" | ———null
Lecture 14: iterators 33 Lecture 14: iterators 34

Interaction of broadcast() and remove()

« If broadcast() and renove() are
unsynchronised, the following bad thing can happen:

« threadl is doing broadcast(), that is going through the list,
opening a stream to each socket and sending a string;

« thread2 which isahandler for some client X called
remove(), so client X’s socket is bypassed in the list;

« threadl already grabbed the reference to Client X’ s socket;
« thread2 closes the socket of X;

« threadl tries to open a stream to a closed socket, exception
isthrown and the program falls over.

Lecture 14: iterators 35

Is unsyncronised add() safe?

* Now check if the Java Gently program is actualy bullet-
proof: can anything bad happen because a client may be
added when aremove isin progress?

* Recall that ChatServer does not lock the list when it calls
clientList.add(client).

Lecture 14: iterators 36

Adding “d” and removing “a”

e ThreadD links “d” to the head of the list:

o\

head
.—» “a »“b” »"C’ »>null

Lecture 14: iterators 37

Adding “d” and removing “a”

¢ ThreadA reassigns the head to be “b":

o]\

head

a »“b" »“C" | ——null

Lecture 14: iterators 38

Adding “d” and removing “a”

* ThreadD completesinsertion by making “d” the new head:

o\

“a »“b” »"C

»null

Lecture 14: iterators 39

Result: lost update

« Java Gently implementation is not totally safe: ChatServer
may be adding clients when some thread is trying to do
remove().

« Since ChatServer does not bother to lock the list, the thread
which is doing remove gets the lock and starts removing
the client.

¢ This update may belost because of ChatServer’s actions.

¢ Conclusion: add() method should be synchronised.

¢ Theeasiest isto use asynchronised collection for the
clientList.

Lecture 14: iterators 40

Synchronised collections

« Synchronised collections only alow their methods to be
called by asingle thread at atime.

* They are thread-safe: no undesirable race hazards happen.
¢ Theonly two examplesin java.util:

— Vect or

— Hasht abl e

Lecture 14: iterators 41

Non synchronised collections

« All other Collections, including java.util.LinkedList.

* To get asynchronised collection, use synchronization
wrappers from Collections class:

public static Collection
synchroni zedCol | ecti on(Col l ection c);

public static Set synchroni zedSet (Set s);

public static List synchronizedLi st (List
list);
etc.

Lecture 14: iterators 42

Example

e Supposeol dl i st isof typejavautil .LinkedList:

List synclist =
Col I ections. synchroni zedLi st (ol dlist);

* Now we have asynchronized list syncl i st .

Lecture 14: iterators 43

Iterating over synchronised collection

* You still need to lock the list when you are iterating over
it:
synchroni zed(synclist) {
Iterator i = synclist.iterator();
while (i.hasNext())
Systemout. println(i.next());
}

* Thisis becauseiterator makes multiple callsinto the
collection (it is unlocked between the cals to next()).

Lecture 14: iterators a4

Serialisation

* Weknow how to write characters and Stringsinto afile.
What if we need to save an object (e.g. alist).

« Reading and writing objects (saving them to afile, or
passing them to a different machine in distributed
computing) requires representing them in a seriaized form
(as a sequence of bytes). Then they can be passed along an

oj ect | nput St ream and Obj ect Qut put St ream

« Inorder to be serializable, an object should implement
Serializable interface (an empty marker interface).

Lecture 14: iterators 45

How to serialize your object

» Statethat it implementsio.Seriaizable interface.
 Itisamarker interface; no methods go with it.
public class List inplenments Serializable

 |If it has Object type fields, they should be instances of
serializable classes (e.g. Node).

class Node inplenents Serializable

Lecture 14: iterators 46

How to serialize your object 2

Qbj ect Qut put St r eam out =
new Obj ect Qut put Stream (
new Fil eQutput Strean("listtest"));
out.witeCbject(nylist);
out.cl ose();
bj ectInput Streamin =
new Obj ect | nput Stream (
new FilelnputStrean("listtest"));
copy = (List) in.readObject();

Lecture 14: iterators 47

Summary

 For iterators, see Sun tutorial
http://java.sun.com/docs/books/tutorial/collections/
interfaces/collection.html

» For serialization, see Sun tutorial
http://java.sun.com/docs/books/tutorial/essential /io/
serialization.html

 For synchronised collections, see Sun tutorial
http://java.sun.com/docs/books/tutorial/collections/

implementations/'wrapper.html and http://java.sun.com/
docs/books/tutorial/essential /threads/multithreaded.html

Lecture 14: iterators 48

