
1

G51PRG:
Introduction to Programming

Second semester
Lecture 13

Natasha Alechina

School of Computer Science & IT

nza@cs.nott.ac.uk

Lecture 13: linked list 2

Previous lecture:networking

How to make your program to make network connections
(java.net package)

• Connecting via URLs

• Connecting via ports and sockets

• ChatServer program

2

Lecture 13: linked list 3

This lecture

• Dynamic arrays and lists

• Implementing a dynamic array

• Implementing a very simple linked list in Java

• Inner classes

Next lecture

– Iterators

– Synchronised data structures (back to ChatServer)

– Serialisation (saving objects)

Lecture 13: linked list 4

Two kinds of sequential collections

• Array-like collections

• Linked collections

• In what follows, we assume that they all have the
following methods:
– Object get(int i) - return the ith element

– void add(Object o) - add Object o

– boolean remove(Object o) - remove the first
occurrence of o in the collection; returns true if o was in
the collection, and false otherwise.

3

Lecture 13: linked list 5

Array-like collections

• Array itself:

– Advantages: easy to use, very fast; equally fast access
to any index (constant time).

– Disadvantages: fixed size

• Vector, ArrayList from java.util: generally known as
dynamic arrays.

– Advantages: almost as fast as array, can grow if more
items need to be inserted

– Disadvantages: resizing expensive; still a bit inflexible.

Lecture 13: linked list 6

Dynamic arrays: idea

• Has an array inside to store Objects

• If array is not large enough, makes a larger one and copies
the values to the new array.

• If an element is removed, the gap is closed by moving
subsequent values one place to the left.

4

Lecture 13: linked list 7

Example

• Dynamic array of initial capacity 5 is created:

Lecture 13: linked list 8

Example

• Adding objects a,b,c,d,e:

a b c d e

5

Lecture 13: linked list 9

Example

• Adding object f:

a b c d e

Lecture 13: linked list 10

Example

• Double the capacity:

a b c d e

6

Lecture 13: linked list 11

Example

a b c d e

• Copy the contents to the new array:

a b c d e

Lecture 13: linked list 12

Example

• Make new array the store:

a b c d e

7

Lecture 13: linked list 13

Example

f

• Add f:

a b c d e

Lecture 13: linked list 14

Example

f

• Remove d:

a b c e

8

Lecture 13: linked list 15

Example

f

• Close the gap:

a b c e

Lecture 13: linked list 16

Implementation of “dynamic array”

public class DynamicArray {

 Object [] store;

 int capacity;//how many items can store

 int size; // how many items stored

 public DynamicArray() {

 store = new Object[10];

 capacity = 10;

 size = 0;

 }

9

Lecture 13: linked list 17

Implementation of “dynamic array”

public void add(Object o) {

// if the store has space, insert o

 if (size < capacity){

 store[size] = o;

 size++;

 }

// otherwise need to enlarge the store

Lecture 13: linked list 18

Implementation of “dynamic array”

else {
 capacity = capacity*2;//or whatever
 Object[] newStore = new
 Object[capacity];
 for (int i = 0; i < size; i++) {
 newStore[i] = store[i];
 }
 store = newStore;
 store[size] = o;
 size++;
 }
}

10

Lecture 13: linked list 19

Implementation of “dynamic array”

public Object get(int i) {

 // check if i is within bounds

 if ((0 <= i)&&(i < size)) {

 return store[i];

 } else {

 throw new

 ArrayIndexOutOfBoundsException();

 }

Lecture 13: linked list 20

Implementation of “dynamic array”

public boolean remove(Object o) {

 int index = -1;

// look for o in store

 for (int i = 0; i < size; i++) {

 if (store[i].equals(o)) {

 index = i; break;

 }

// if o not in store, return false

 if (index == -1) return false;

11

Lecture 13: linked list 21

Implementation of “dynamic array”

// else replace o by the next value and

// shift remaining values to the left

for (int i = index; i < size-1; i++){

 store[i] = store[i+1];

}

size--;

return true;

}

Lecture 13: linked list 22

Linked list

• A linked list consists of nodes .

• Each node has a contents fields which stores data (an
Object) and a link field which says what the next item in
the list is. A list has a head field which refers to the head of
the list.

List
head

content link

node

content link

node

null

12

Lecture 13: linked list 23

Example: (“a”, “b”, “c”) list

• This list contains three strings (“a”, “b”, “c”).

List
head

“a” null“b” “c”

Lecture 13: linked list 24

Linked list

• Really dynamic data structure - don’t have to know initial
size at all

• No problems with resizing

• Slow (sequential) access to elements in the middle of the
list

13

Lecture 13: linked list 25

Linked list: how to add things

• We add things at the beginning of the list. To add a new
node with an object d inside it to the list above, we

– create a new node with d as its contents

– link this node to the present head of the list (so that the
present head is the next element)

– make the new node to be the new head of the list

Lecture 13: linked list 26

Example: adding “d”

• Create a new node:

List
head

“a” null“b” “c”

“d”

14

Lecture 13: linked list 27

Example: adding “d”

• Link it to the head of the list:

List
head

“a” null“b” “c”

“d”

Lecture 13: linked list 28

Example: adding “d”

• Make it the new head of the list:

List

head

“a” null“b” “c”

“d”

15

Lecture 13: linked list 29

Linked list: how to remove things

• We find the first node which has the object to be removed
as contents, and bypass it: get the node which was linked
to the removed node to link to the o-node's successor in the
list.

• No other object now has a reference to the removed node
so it will be garbage-collected by Java's garbage collector
eventually. You don't have to destroy it yourself.

Lecture 13: linked list 30

Example: removing a node

• To remove “b”...

List
head

“a” null“b” “c”

16

Lecture 13: linked list 31

Example: removing a node

• Get “a” to link to “c”:

List
head

“a” null“b” “c”

Lecture 13: linked list 32

Example: removing a node

• Eventually “b” will be garbage collected:

List
head

“a” null“c”

17

Lecture 13: linked list 33

Linked list implementation

• Need a class to represent nodes in a list

• Need a list class to store the head of the list and
add(Object o), remove(Object o),
get(int i) methods.

Lecture 13: linked list 34

Node class

 class Node {

 Object contents;

 Node link;

 public Node(Object o, Node next) {

 this.contents = o;

 this.link = next;

 }

}

18

Lecture 13: linked list 35

List class

 public class List{

 Node head;

 public List() {

 this.head = null;

 }

 public void add(Object o){

 Node newHead = new Node (o, head);

 head = newHead;

 }

Lecture 13: linked list 36

List class

 public boolean remove(Object o){

 if (head == null) return false;

 if (head.contents.equals(o)){

 head = head.link;

 return true;

 }

// otherwise look for o in the list

19

Lecture 13: linked list 37

List class: remove() continued

Node checkNode = head;

 while(checkNode.link != null){

 if (checkNode.link.contents.equals(o)){

 checkNode.link = checkNode.link.link;

 return true;

 } else {

 checkNode = checkNode.link;

 }
 } // end while
 return false;
}

Lecture 13: linked list 38

Access to element at index i

• Access to element at index i comes less naturally to lists
than to dynamic arrays.

• We’ll postpone implementing get(int i) method until
the next lecture, when we look at Iterators.

• Intuitively, Iterators are objects which know how to walk
or iterate along the list. A bit like Tokenizers, they have
boolean hasNext() and Object next()
methods.

• We will implement get(int i) using an Iterator: get it
to produce i items in order, and then return the ith item.

20

Lecture 13: linked list 39

Digression: inner classes

• This is really a bit of a digression; but the List and Node
classes are a good illustration of the use of inner classes.

• Another good illustration are graphical user interfaces,
which we will see later in the course.

Lecture 13: linked list 40

Inner, or nested, classes

• Classes can be members of other classes. Just like other
members, they can be declared public or private, static etc.
Why would one do this?

– one class is auxiliary and only makes sense in the
context of the other class (like the Node class)

– convenience

– encapsulation

21

Lecture 13: linked list 41

Two kinds of nested classes

• top-level nested classes (static)

• inner classes (non-static)

• Static inner classes have the same status as top-level
(ordinary) classes. They just tucked away in another class
to keep the code tidy and readable.

• Static nested classes exist relative to the class where they
are defined.

• Non-static nested classes exist relative to an object of the
class.

Lecture 13: linked list 42

Static nested classes

• Example from Arnold and Gosling:

public class BankAccount {

 private long number;

 private long balance;

 public static class Permissions {

 public boolean canDeposit,

 canWithdraw,

 canClose;

 }

 // class BankAccount continued

22

Lecture 13: linked list 43

Inner classes

• Non-static nested classes are called inner classes. (In Java
Gently they are called member classes).

• They cannot have static members.

• They have access to enclosing instance of other class, even
to private fields and methods; this is used to refer to the
inner class members, this prefixed by the outer class
name to the outer class members.

Lecture 13: linked list 44

Example

public class List {

 class Node {

 Object contents;

 Node link;

 Node(Object o, Node next) {

 this.contents = o;

 this.link = next;

 }

 }// end of Node class

 Node head; // List continued

23

Lecture 13: linked list 45

Example

• When the List class is compiled, so is the inner class Node.
Instead of Node.class, we get

List$Node.class

• In general, when an nested (static or non-static) class A of
class B is compiled, its name is given as B$A.class

Lecture 13: linked list 46

Summary

• For nested classes, see Sun tutorial
http://java.sun.com/docs/books/tutorial/java/javaOO/nested.html

• For various linked lists and flexible arrays, any textbook
with data structures in it, and Java API classes.

• Will see more of it in the Algorithms and Data Structures
course next year.

• Good exercise: implement a recursive list in Java (like a
list in Haskell).

• Snag to watch for: empty list not the same as null;
probably will need a special empty list class.

