G51PRG:
Introduction to Programming

Second semester
Lecture 13

Natasha Alechina
School of Computer Science & IT
nza@s. nott. ac. uk

Previous lecture:networking

How to make your program to make network connections
(java.net package)

e Connecting viaURLSs

» Connecting via ports and sockets
» ChatServer program

Lecture 13: linked list

This lecture

* Dynamic arrays and lists

* Implementing a dynamic array

* Implementing avery simple linked list in Java
* Inner classes

Next lecture
— |terators
— Synchronised data structures (back to ChatServer)
— Serialisation (saving objects)

Lecture 13: linked list 3

Two kinds of sequential collections

» Array-like collections
» Linked collections

* Inwhat follows, we assume that they all have the
following methods:
— Obj ect get(int i) -returntheith element
—voi d add(Obj ect 0) -add Object o
— bool ean renove(Obj ect 0) - removethefirst

occurrence of o in the collection; returnstrueif owasin
the collection, and false otherwise.

Lecture 13: linked list 4

Array-like collections

o Array itsdf:
— Advantages: easy to use, very fast; equally fast access
to any index (constant time).
— Disadvantages: fixed size
» Vector, ArrayList from java.util: generally known as
dynamic arrays.
— Advantages. ailmost asfast as array, can grow if more
items need to be inserted
— Disadvantages: resizing expensive; still abit inflexible.

Lecture 13: linked list 5

Dynamic arrays: idea

» Hasan array inside to store Objects

 |f array is not large enough, makes alarger one and copies
the values to the new array.

» |f an element isremoved, the gap is closed by moving
subsequent values one place to the left.

Lecture 13: linked list

Example

* Dynamic array of initial capacity 5 is created:

Lecture 13: linked list

Example

» Adding objectsa,b,c,d,e:

Lecture 13: linked list

Example

» Adding object f:

Lecture 13: linked list 9
Example
» Double the capacity:

Lecture 13: linked list 10

Example

» Copy the contentsto the new array:

Lecture 13: linked list

11

Example

* Make new array the store:

Lecture 13: linked list

12

Example

e Addf:

Lecture 13: linked list 13
Example
* Removed:

Lecture 13: linked list 14

Example

» Closethe gap:

Lecture 13: linked list 15

Implementation of “dynamic array”

public class Dynam cArray {
bject [] store;
int capacity;//how many itens can store
int size; // how nmany itens stored
public Dynam cArray() {
store = new (bj ect[10];
capacity = 10;
size = 0;

Lecture 13: linked list 16

Implementation of “dynamic array”

public void add(Object o) {

/1l if the store has space, insert o
if (size < capacity){
store[size] = o;
Si ze++;

}

/'l otherwi se need to enlarge the store

Lecture 13: linked list

17

Implementation of “dynamic array”

el se {
capacity = capacity*2;//or whatever
bj ect[] newStore = new
oj ect [capacity];
0; I < size; i++) {
= store[i];

for (int i =
newst orefi]

}

store = newsStore;

store[size] = o;

Si ze++;

Lecture 13: linked list

18

Implementation of “dynamic array”

public Object get(int i) {
/1l check if i is within bounds
if ((0 <=1)&&(i < size)) {
return storef[i];
} else {
t hr ow new
Arrayl ndexQut Of BoundsExcepti on();

Lecture 13: linked list 19

Implementation of “dynamic array”

publ i ¢ bool ean renmove(Obj ect 0) {
int index = -1;
/1l 1ook for oin store

for (int i =0; i < size; i++) {
if (store[i].equals(0)) {
i ndex = i; break;
}
/1 if onot in store, return false
if (index == -1) return fal se;
Lecture 13: linked list 20

10

Implementation of “dynamic array”

/'l else replace o by the next val ue and
/1 shift remaining values to the |eft

for (int i = index; i < size-1; i++){
store[i] = store[i+1];

}

si ze--;

return true;

}

Lecture 13: linked list 21

Linked list

* A linked list consists of nodes .

» Each node has a contents fields which stores data (an
Object) and alink field which says what the next item in
thelistis. A list has a head field which refers to the head of
thelist.

head
.—’ content | link

node node

content | link— null

\ 4

Lecture 13: linked list 22

11

Example: (“a”, “b”, “c”) list

» Thislist containsthree strings (“a’, “b”, “c”).

\ 4
G
\ 4
o

»null

. head
113 d’

Lecture 13: linked list 23

Linked list

* Readly dynamic data structure - don’t have to know initial
sizeat al

* No problemswith resizing

» Slow (sequential) access to elements in the middle of the
list

Lecture 13: linked list 24

12

Linked list: how to add things

* We add things at the beginning of thelist. To add a new
node with an object d inside it to the list above, we

— create anew node with d as its contents

— link this node to the present head of thelist (so that the
present head is the next element)

— make the new node to be the new head of thelist

Lecture 13: linked list 25

Example: adding “d”

* Create anew node:

\ 4
S
\ 4
o

»null

. head
113 d’

Lecture 13: linked list 26

13

Example: adding “d”

¢ Link it to the head of thelist:

A 4
I

\ 4

. head
113 d’

Lecture 13: linked list

»null

27

Example: adding “d”

* Makeit the new head of thelist:

\ 4

Lecture 13: linked list

»null

28

14

Linked list: how to remove things

» Wefind the first node which has the object to be removed
as contents, and bypassit: get the node which was linked
to the removed node to link to the o-node's successor in the
list.

» No other object now has areference to the removed node
so it will be garbage-collected by Java's garbage collector
eventually. You don't have to destroy it yourself.

Lecture 13: linked list 29

Example: removing a node

* Toremove“b”...

\ 4
S
\ 4
o

»null

. head
113 d’

Lecture 13: linked list 30

15

Example: removing a node

e Get“d tolinkto“c”:

.ﬁ/\

“ d’ / “ b’ > “ Cn > nu”

Lecture 13: linked list 31

Example: removing a node

» Eventualy “b” will be garbage collected:

d’ / “ Cn _ nu| I

Lecture 13: linked list 32

16

Linked list implementation

» Need aclassto represent nodesin alist

* Need alist class to store the head of the list and
add(Qbj ect 0), renove(oject o),
get (int i) methods.

Lecture 13: linked list

33

Node class

cl ass Node {
(bj ect contents;
Node | i nk;

publ i c Node((Qbject o, Node next) {
this.contents = o;
this.link = next;

}

Lecture 13: linked list

17

List class

public class List{
Node head;

public List() {
this.head = null;
}
public void add(Object 0){
Node newHead = new Node (o0, head);
head = newHead;

}

Lecture 13: linked list 35

List class

publ i ¢ bool ean renove(Obj ect 0){
if (head == null) return fal se;
i f (head.contents. equal s(0)){
head = head. | i nk;
return true;

}

// otherwise look for oin the |ist

Lecture 13: linked list 36

List class: remove() continued

Node checkNode = head;
whi | e(checkNode. link !'= null){

i f (checkNode. link.contents. equal s(0)){
checkNode. | i nk = checkNode. |'i nk. Ii nk;
return true;

} else {
checkNode = checkNode. | i nk;

}
} /1 end while
return fal se;

}

Lecture 13: linked list 37

Access to element at index i

» Accessto element at index i comes less naturally to lists
than to dynamic arrays.

» We'll postpone implementing get (i nt i) method until
the next lecture, when we look at Iterators.

* Intuitively, Iterators are objects which know how to walk
or iterate along the list. A bit like Tokenizers, they have
bool ean hasNext () and Qbj ect next ()
methods.

* Wewill implement get (i nt 1) using an Iterator: get it
to producei itemsin order, and then return the i thitem.

Lecture 13: linked list 38

19

Digression: inner classes

» Thisisredly abit of adigression; but the List and Node
classes are agood illustration of the use of inner classes.

» Another good illustration are graphical user interfaces,
which we will see later in the course.

Lecture 13: linked list 39

Inner, or nested, classes

* Classes can be members of other classes. Just like other
members, they can be declared public or private, static etc.
Why would one do this?

— oneclassisauxiliary and only makes sensein the
context of the other class (like the Node class)

— convenience
— encapsulation

Lecture 13: linked list 40

20

Two kinds of nested classes

* top-level nested classes (static)
* inner classes (non-static)

» Static inner classes have the same status as top-level
(ordinary) classes. They just tucked away in another class
to keep the code tidy and readable.

» Static nested classes exist relative to the class where they
are defined.

* Non-static nested classes exist relative to an object of the
class.

Lecture 13: linked list 41

Static nested classes

» Example from Arnold and Gosling:
publ i c class BankAccount ({
private | ong nunber;
private | ong bal ance;
public static class Perm ssions {
publ i ¢ bool ean canDeposit,
canW t hdr aw,

cand ose;
/! class BankAccount conti nued
Lecture 13: linked list 42

21

Inner classes

» Non-static nested classes are called inner classes. (In Java
Gently they are called member classes).

* They cannot have static members.

» They have access to enclosing instance of other class, even
to private fields and methods; t hi s isused to refer to the
inner class members, t hi s prefixed by the outer class
name to the outer class members.

Lecture 13: linked list 43

Example

public class List {
cl ass Node {

hj ect contents;

Node | i nk;

Node(Cbj ect o, Node next) {
this.contents = o;
this.link = next;

}

}// end of Node class
Node head; /1 List continued

Lecture 13: linked list 44

22

Example

* When the List classis compiled, so isthe inner class Node.
Instead of Node. cl ass, we get

Li st $Node. cl ass

* Ingenera, when an nested (static or non-static) class A of
class B is compiled, its nameis given as B$A .class

Lecture 13: linked list 45

Summary

» For nested classes, see Sun tutorial
http://java.sun.com/docs/book /'tutorial/java/javaOO/nested.html

» For various linked lists and flexible arrays, any textbook
with data structuresin it, and Java APl classes.

* Will seemore of it in the Algorithms and Data Structures
course next year.

» Good exercise: implement arecursivelist in Java (like a
list in Haskell).

* Snag to watch for: empty list not the same as null;
probably will need a special empty list class.

Lecture 13: linked list 46

23

