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Previous lecture:networking

How to make your program to make network connections
(javanet package)

» Connecting viaURLS

» Connecting via ports and sockets
» ChatServer program
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This lecture

¢ Dynamic arraysand lists

* Implementing adynamic array

* Implementing avery simple linked list in Java
* Inner classes

Next lecture
— lterators
— Synchronised data structures (back to ChatServer)
— Seridisation (saving objects)
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Two kinds of sequential collections

* Array-like collections
* Linked collections
* Inwhat follows, we assume that they all have the
following methods:
— Obj ect get(int i) -returntheith element
—voi d add(Cbj ect 0) - add Object o
— bool ean renove(bj ect 0) - removethefirst
occurrence of o in the collection; returnstrue if owasin
the collection, and false otherwise.
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Array-like collections

e Array itself:
— Advantages: easy to use, very fast; equally fast access
to any index (constant time).
— Disadvantages: fixed size
* Vector, ArrayList from java.util: generally known as
dynamic arrays.
— Advantages: almost as fast as array, can grow if more
items need to be inserted

— Disadvantages: resizing expensive; still abit inflexible.
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Dynamic arrays: idea

* Hasan array inside to store Objects

 |If array is not large enough, makes alarger one and copies
the values to the new array.

e If an element isremoved, the gap is closed by moving
subsequent values one place to the lft.
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Example

« Dynamic array of initial capacity 5 is created:

HENEE
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Example

« Adding objects a,b,c,d,e:
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Example

« Adding object f:
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Example

» Double the capacity:
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Example

« Copy the contents to the new array:

a[b]e[a]e]
EEeEE | [ ][]
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1

Example

* Make new array the store:

S [ [ [ ]
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Example

e Addf:

laofelalele] [ [
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Example

¢ Removed:

EEE EE [ [
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Example

« Closethe gap:

SR ][
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Implementation of “dynamic array”

public class Dynami cArray {
Obj ect [] store;
int capacity;//how many items can store
int size; // how many itens stored
public Dynami cArray() {
store = new Object[10];
capacity = 10;
size = 0;
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Implementation of “dynamic array”

public void add(Object o) {
/1 if the store has space, insert o
if (size < capacity){
store[size] = o;
Si zet++;
}

/1 otherwi se need to enlarge the store

Lecture 13: linked list 17

Implementation of “dynamic array”

el se {
capacity = capacity*2;//or whatever
Obj ect[] newStore = new
oj ect [ capaci ty];
for (int i =0; i < size; i++) {
newStore[i] = store[i];
}
store = newStore;
store[size] = o;
Si ze++;
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Implementation of “dynamic array”

public Object get(int i) {
/1 check if i is wthin bounds
if ((0 <=1i)&&(i < size)) {

Implementation of “dynamic array”

public bool ean renove(Cbject o) {
int index = -1;
/!l look for o in store

return store[i]; for (int i =0; i < size; i++) {
} else { if (store[i].equals(o)) {
t hrow new index = i; break;
Arrayl ndexQut O BoundsExcepti on(); }
} /!l if onot in store, return fal se
if (index == -1) return fal se;
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Implementation of “dynamic array” Linked list

/1 else replace o by the next value and

/1 shift remaining values to the left

for (int i =index; i < size-1; i++){
store[i] = store[i+1];

}

size--;

return true;

}
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« A linked list consists of nodes .

« Each node has a contents fields which stores data (an
Object) and alink field which sayswhat the next itemin
thelistis. A list has a head field which refers to the head of
thelist.

head
content | link——> content | link——> null

node node
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Example: (“a”, “b", “c”) list

* Thislist containsthree strings (“a’, “b”, “c”).

—null

head
.—» “a >“b" »"C’
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Linked list

* Redly dynamic data structure - don’t have to know initial
sizeat all

» No problems with resizing

« Slow (sequentia) access to elementsin the middle of the
list
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Linked list: how to add things

* We add things at the beginning of thelist. To add a new
node with an object dinside it to the list above, we

— create anew node with d as its contents

— link this node to the present head of the list (so that the
present head is the next element)

— make the new node to be the new head of the list

Example: adding “d”

¢ Create anew node:

“qp

head
.—> “a »“b"

»“C" | ——null
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Example: adding “d” Example: adding “d”
e Link it to the head of thelist: * Makeit the new head of thelist:
“gr g
\ Ny, SA
head
.—» “a >0 »"C" »>null “a > 0" »“C"| ——null
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Linked list: how to remove things Example: removing a node
« Wefind the first node which has the object to be removed e Toremove“b"...
as contents, and bypassiit: get the node which was linked
to the removed node to link to the o-node's successor in the
list.
« No other object now has areference to the removed node
so it will be garbage-collected by Java's garbage collector
eventually. You don't have to destroy it yourself. head
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Example: removing a node

e Get“d tolinkto“c”:

. /\
.—» “a| /] “b” »C” >null

Example: removing a node

« Eventually “b” will be garbage collected:

_ /\
.—» a| /] “¢"| ———null
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Linked list implementation Node class
* Need aclassto represent nodesin alist cl ass Node {
* Need alist class to store the head of the list and Obj ect contents;
add(Qoj ect o), renpve(Object o), Node |i nk;

get (i nt i) methods.
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public Node(Object o, Node next) {
this.contents = o;
this.link = next;

}
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List class

public class List{
Node head;

public List() {
this.head = null;

}

public void add(bject o0){
Node newHead = new Node (o, head);
head = newHead;

}
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List class

public bool ean renpve(Object o0){
if (head == null) return fal se;
i f (head. contents. equal s(0)){

head = head. | i nk;
return true;

}

/1 otherwi se look for oin the list
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List class: remove() continued

Node checkNode = head;
whi | e(checkNode. link !'= null){
if (checkNode.link.contents.equal s(0)){
checkNode. | i nk = checkNode. | i nk. i nk;
return true;
} else {
checkNode = checkNode. | i nk;

}
} /1 end while
return false;
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Access to element at index i

* Accessto element at index i comes less naturaly to lists
than to dynamic arrays.

* We'll postpone implementing get (i nt i) method until
the next lecture, when we look at Iterators.

* Intuitively, Iterators are objects which know how to walk
or iterate along thelist. A bit like Tokenizers, they have
bool ean hasNext () and Obj ect next ()
methods.

* Wewill implement get (i nt i) using an Iterator: get it
to producei itemsin order, and then return the i thitem.
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Digression: inner classes

* Thisisreally abit of adigression; but the List and Node
classes are agood illustration of the use of inner classes.

« Another good illustration are graphical user interfaces,
which we will see later in the course.
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Inner, or nested, classes

 Classes can be members of other classes. Just like other
members, they can be declared public or private, static etc.
Why would one do this?

— oneclassisauxiliary and only makes sense in the
context of the other class (like the Node class)

— convenience
— encapsulation
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Two kinds of nested classes

* top-level nested classes (static)
 inner classes (non-static)

 Static inner classes have the same status as top-level
(ordinary) classes. They just tucked away in another class
to keep the code tidy and readable.

« Static nested classes exist relative to the class where they
are defined.

« Non-static nested classes exist relative to an object of the
class.
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Static nested classes

» Example from Arnold and Gosling:
public class BankAccount {
private |ong nunber;
private | ong bal ance;
public static class Permssions {
publ i c bool ean canDeposit,
canW t hdr aw,
cand ose;
}

/1 class BankAccount continued
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Inner classes

* Non-static nested classes are called inner classes. (In Java
Gently they are called member classes).

* They cannot have static members.

» They have access to enclosing instance of other class, even
to private fieldsand methods; t hi s isused to refer to the
inner class members, t hi s prefixed by the outer class
name to the outer class members.

Example

public class List {
cl ass Node {
oj ect contents;
Node | i nk;
Node( Qbj ect o, Node next) {
this.contents = o;
this.link = next;

}
}// end of Node cl ass
Node head; /] List continued
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Example Summary

* When the List classis compiled, soistheinner class Node.
Instead of Node. cl ass, we get

Li st $Node. cl ass

« Ingeneral, when an nested (static or non-static) class A of
class B is compiled, its nameis given as B$A.class
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» For nested classes, see Sun tutorial
http://java.sun.com/docs/books/tutorial/j ava/javaOO/nested.html

 For various linked lists and flexible arrays, any textbook
with data structuresin it, and Java API classes.

* Will see more of it in the Algorithms and Data Structures
course next year.

* Good exercise: implement arecursivelist in Java (like a
list in Haskell).

* Snag to watch for: empty list not the same as null;
probably will need a special empty list class.
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