G51PRG:
Introduction to Programming
Second semester
Lecture 13

Natasha Alechina
School of Computer Science & IT
nza@s. nott. ac. uk

Previous lecture:networking

How to make your program to make network connections
(javanet package)

» Connecting viaURLS

» Connecting via ports and sockets
» ChatServer program

Lecture 13: linked list 2

This lecture

¢ Dynamic arraysand lists

* Implementing adynamic array

* Implementing avery simple linked list in Java
* Inner classes

Next lecture
— lterators
— Synchronised data structures (back to ChatServer)
— Seridisation (saving objects)

Lecture 13: linked list

Two kinds of sequential collections

* Array-like collections
* Linked collections
* Inwhat follows, we assume that they all have the
following methods:
— Obj ect get(int i) -returntheith element
—voi d add(Cbj ect 0) - add Object o
— bool ean renove(bj ect 0) - removethefirst
occurrence of o in the collection; returnstrue if owasin
the collection, and false otherwise.

Lecture 13: linked list 4

Array-like collections

e Array itself:
— Advantages: easy to use, very fast; equally fast access
to any index (constant time).
— Disadvantages: fixed size
* Vector, ArrayList from java.util: generally known as
dynamic arrays.
— Advantages: almost as fast as array, can grow if more
items need to be inserted

— Disadvantages: resizing expensive; still abit inflexible.

Lecture 13: linked list

Dynamic arrays: idea

* Hasan array inside to store Objects

 |If array is not large enough, makes alarger one and copies
the values to the new array.

e If an element isremoved, the gap is closed by moving
subsequent values one place to the lft.

Lecture 13: linked list 6

Example

« Dynamic array of initial capacity 5 is created:

HENEE

Lecture 13: linked list

Example

« Adding objects a,b,c,d,e:

Lecture 13: linked list

Example

« Adding object f:

Lecture 13: linked list

Example

» Double the capacity:

Lecture 13: linked list

Example

« Copy the contents to the new array:

a[b]e[a]e]
EEeEE | [][]

Lecture 13: linked list

1

Example

* Make new array the store:

S [[[]

Lecture 13: linked list

Example

e Addf:

laofelalele] [[

Lecture 13: linked list 13

Example

¢ Removed:

EEE EE [[

Lecture 13: linked list 14

Example

« Closethe gap:

SR][

Lecture 13: linked list 15

Implementation of “dynamic array”

public class Dynami cArray {
Obj ect [] store;
int capacity;//how many items can store
int size; // how many itens stored
public Dynami cArray() {
store = new Object[10];
capacity = 10;
size = 0;

Lecture 13: linked list 16

Implementation of “dynamic array”

public void add(Object o) {
/1 if the store has space, insert o
if (size < capacity){
store[size] = o;
Si zet++;
}

/1 otherwi se need to enlarge the store

Lecture 13: linked list 17

Implementation of “dynamic array”

el se {
capacity = capacity*2;//or whatever
Obj ect[] newStore = new
oj ect [capaci ty];
for (int i =0; i < size; i++) {
newStore[i] = store[i];
}
store = newStore;
store[size] = o;
Si ze++;

Lecture 13: linked list 18

Implementation of “dynamic array”

public Object get(int i) {
/1 check if i is wthin bounds
if ((0 <=1i)&&(i < size)) {

Implementation of “dynamic array”

public bool ean renove(Cbject o) {
int index = -1;
/!l look for o in store

return store[i]; for (int i =0; i < size; i++) {
} else { if (store[i].equals(o)) {
t hrow new index = i; break;
Arrayl ndexQut O BoundsExcepti on(); }
} /!l if onot in store, return fal se
if (index == -1) return fal se;
Lecture 13: linked list 19 Lecture 13: linked list 20
Implementation of “dynamic array” Linked list

/1 else replace o by the next value and

/1 shift remaining values to the left

for (int i =index; i < size-1; i++){
store[i] = store[i+1];

}

size--;

return true;

}

Lecture 13: linked list 21

« A linked list consists of nodes .

« Each node has a contents fields which stores data (an
Object) and alink field which sayswhat the next itemin
thelistis. A list has a head field which refers to the head of
thelist.

head
content | link——> content | link——> null

node node

Lecture 13: linked list 22

Example: (“a”, “b", “c”) list

* Thislist containsthree strings (“a’, “b”, “c”).

—null

head
.—» “a >“b" »"C’

Lecture 13: linked list 23

Linked list

* Redly dynamic data structure - don’t have to know initial
sizeat all

» No problems with resizing

« Slow (sequentia) access to elementsin the middle of the
list

Lecture 13: linked list 24

Linked list: how to add things

* We add things at the beginning of thelist. To add a new
node with an object dinside it to the list above, we

— create anew node with d as its contents

— link this node to the present head of the list (so that the
present head is the next element)

— make the new node to be the new head of the list

Example: adding “d”

¢ Create anew node:

“qp

head
.—> “a »“b"

»“C" | ——null
Lecture 13: linked list 25 Lecture 13: linked list 26
Example: adding “d” Example: adding “d”
e Link it to the head of thelist: * Makeit the new head of thelist:
“gr g
\ Ny, SA
head
.—» “a >0 »"C" »>null “a > 0" »“C"| ——null
Lecture 13: linked list 27 Lecture 13: linked list 28
Linked list: how to remove things Example: removing a node
« Wefind the first node which has the object to be removed e Toremove“b"...
as contents, and bypassiit: get the node which was linked
to the removed node to link to the o-node's successor in the
list.
« No other object now has areference to the removed node
so it will be garbage-collected by Java's garbage collector
eventually. You don't have to destroy it yourself. head

Lecture 13: linked list 29

Lecture 13: linked list

Example: removing a node

e Get“d tolinkto“c”:

. /\
.—» “a| /] “b” »C” >null

Example: removing a node

« Eventually “b” will be garbage collected:

_ /\
.—» a| /] “¢"| ———null

Lecture 13: linked list 31 Lecture 13: linked list 32
Linked list implementation Node class
* Need aclassto represent nodesin alist cl ass Node {
* Need alist class to store the head of the list and Obj ect contents;
add(Qoj ect o), renpve(Object o), Node |i nk;

get (i nt i) methods.

Lecture 13: linked list 33

public Node(Object o, Node next) {
this.contents = o;
this.link = next;

}

Lecture 13: linked list 34

List class

public class List{
Node head;

public List() {
this.head = null;

}

public void add(bject o0){
Node newHead = new Node (o, head);
head = newHead;

}

Lecture 13: linked list 35

List class

public bool ean renpve(Object o0){
if (head == null) return fal se;
i f (head. contents. equal s(0)){

head = head. | i nk;
return true;

}

/1 otherwi se look for oin the list

Lecture 13: linked list 36

List class: remove() continued

Node checkNode = head;
whi | e(checkNode. link !'= null){
if (checkNode.link.contents.equal s(0)){
checkNode. | i nk = checkNode. | i nk. i nk;
return true;
} else {
checkNode = checkNode. | i nk;

}
} /1 end while
return false;

Lecture 13: linked list 37

Access to element at index i

* Accessto element at index i comes less naturaly to lists
than to dynamic arrays.

* We'll postpone implementing get (i nt i) method until
the next lecture, when we look at Iterators.

* Intuitively, Iterators are objects which know how to walk
or iterate along thelist. A bit like Tokenizers, they have
bool ean hasNext () and Obj ect next ()
methods.

* Wewill implement get (i nt i) using an Iterator: get it
to producei itemsin order, and then return the i thitem.

Lecture 13: linked list 38

Digression: inner classes

* Thisisreally abit of adigression; but the List and Node
classes are agood illustration of the use of inner classes.

« Another good illustration are graphical user interfaces,
which we will see later in the course.

Lecture 13: linked list 39

Inner, or nested, classes

 Classes can be members of other classes. Just like other
members, they can be declared public or private, static etc.
Why would one do this?

— oneclassisauxiliary and only makes sense in the
context of the other class (like the Node class)

— convenience
— encapsulation

Lecture 13: linked list 40

Two kinds of nested classes

* top-level nested classes (static)
 inner classes (non-static)

 Static inner classes have the same status as top-level
(ordinary) classes. They just tucked away in another class
to keep the code tidy and readable.

« Static nested classes exist relative to the class where they
are defined.

« Non-static nested classes exist relative to an object of the
class.

Lecture 13: linked list 41

Static nested classes

» Example from Arnold and Gosling:
public class BankAccount {
private |ong nunber;
private | ong bal ance;
public static class Permssions {
publ i c bool ean canDeposit,
canW t hdr aw,
cand ose;
}

/1 class BankAccount continued

Lecture 13: linked list 42

Inner classes

* Non-static nested classes are called inner classes. (In Java
Gently they are called member classes).

* They cannot have static members.

» They have access to enclosing instance of other class, even
to private fieldsand methods; t hi s isused to refer to the
inner class members, t hi s prefixed by the outer class
name to the outer class members.

Example

public class List {
cl ass Node {
oj ect contents;
Node | i nk;
Node(Qbj ect o, Node next) {
this.contents = o;
this.link = next;

}
}// end of Node cl ass
Node head; /] List continued
Lecture 13: linked list 43 Lecture 13: linked list 44
Example Summary

* When the List classis compiled, soistheinner class Node.
Instead of Node. cl ass, we get

Li st $Node. cl ass

« Ingeneral, when an nested (static or non-static) class A of
class B is compiled, its nameis given as B$A.class

Lecture 13: linked list 45

» For nested classes, see Sun tutorial
http://java.sun.com/docs/books/tutorial/j ava/javaOO/nested.html

 For various linked lists and flexible arrays, any textbook
with data structuresin it, and Java API classes.

* Will see more of it in the Algorithms and Data Structures
course next year.

* Good exercise: implement arecursivelist in Java (like a
list in Haskell).

* Snag to watch for: empty list not the same as null;
probably will need a special empty list class.

Lecture 13: linked list 46

