
1

G51PRG:
Introduction to Programming

Second semester
Lecture 12

Natasha Alechina

School of Computer Science & IT

nza@cs.nott.ac.uk

Lecture 12: networking 2

Previous lecture: threads

• What is a thread

• Why use multiple threads

• Issues and problems involved

• Java threads

2

Lecture 12: networking 3

This lecture:networking

How to make your program to make network connections
(java.net package)

• Connecting via URLs

• Connecting via ports and sockets

Lecture 12: networking 4

URL

• URL is the acronym for Uniform Resource Locator. It is a
reference (an address) to a resource on the Internet.

• A URL takes the form of a string that describes how to
find a resource on the Internet. URLs have two main
components: the protocol needed to access the resource
and the location of the resource. For example,
http://www.cs.nott.ac.uk/

• Java programs can use a class called URL in the java.net
package to represent a URL address.

3

Lecture 12: networking 5

URL class

• The simplest constructor:

URL(String url)

throws a MalformedURLException.

• Example:

URL school = new

URL("http://www.cs.nott.ac.uk/");

Lecture 12: networking 6

URL class: constructors

• More complicated constructor:

public URL(String protocol,

 String host,

 int port,

 String file)

throws MalformedURLException.

Example: http://www.ncsa.uiuc.edu:8080/demoweb/url-primer.html

URL u = new

URL("http","www.ncsa.uiuc.edu", 8080,
"demoweb/url-primer.html");

4

Lecture 12: networking 7

URL class: methods

• String getFile() - returns the file name of this
URL.

• String getHost() - returns the host name of this
URL, if applicable.

• int getPort() - returns the port number of this URL.

• InputStream openStream() - opens a connection
to this URL and returns an InputStream for reading
from that connection.

• URLConnection openConnection() - returns a
URLConnection object that represents a connection to
the remote object referred to by the URL.

Lecture 12: networking 8

Reading contents of a URL

• Use openStream() method of URL class.

URL example = new

URL("http://www.cs.nott.ac.uk/~nza");

BufferedReader in = new

BufferedReader(new InputStreamReader(

 example.openStream()));

String inputLine;

while((inputLine = in.readLine())!= null)

 System.out.println(inputLine);

in.close();

5

Lecture 12: networking 9

Creating a URL connection

• Alternative: create a Connection object and read and write
using its methods.

URL example = new

URL("http://www.cs.nott.ac.uk/~nza");

URLConnection ex =
example.openConnection();

BufferedReader in = new

BufferedReader(new InputStreamReader(

 ex.getInputStream()));

Lecture 12: networking 10

Writing to a URL

• You can also write to a URL connection (filling in forms,
for example). More on

http://java.sun.com/docs/books/tutorial/networking/urls/

readingWriting.html

6

Lecture 12: networking 11

Ports and Sockets

• URLs are a high-level mechanism for accessing resources
on the Internet. Client-server applications require lower-
level network communication.

• A port is an abstraction of a physical place through which
communication can proceed between a server and a client.

• A socket is an abstraction of a network software which
enables communication in an out of the program.

Lecture 12: networking 12

Ports and Sockets continued

• Several sockets (for connecting clients) can be created on a
single port (server).

• To be more precise, a server accepts a client on the server
port and creates a socket for them on a different port.
However, Java hides those details from you.

Server
Port 80

web client

web client

port 8080

7

Lecture 12: networking 13

ServerSocket class

One of the constructors:

• ServerSocket(int port) - creates a server socket
on a specified port.

Some methods:

• Socket accept() - listens for a connection to be made
to this socket and accepts it.

• void close() - closes this socket.

• InetAddress getInetAddress() - returns the
local address of this server socket.

• int getLocalPort() - returns the port on which this
socket is listening.

Lecture 12: networking 14

Socket class

Some of the constructors:

• Socket(String host, int port) - - creates a
stream socket and connects it to the specified port number
on the named host.

• Socket(InetAddress address, int port) -
creates a stream socket and connects it to the specified port
number at the specified IP address.

8

Lecture 12: networking 15

Socket class

Some methods:

• void close() - closes this socket.

• InetAddress getInetAddress() - returns the
address to which the socket is connected.

• int getLocalPort() - returns the local port to which
this socket is bound.

• OutputStream getOutputStream() - returns an
output stream for this socket.

Lecture 12: networking 16

Writing a client server application

• Write a server class (what does the server do; at least
should open a ServerSocket)

• Write a client class

• Write a protocol for communication between client and
server

• When the server is running, it creates a thread to deal with
each new client.

9

Lecture 12: networking 17

Case study: chat server

• The program (slightly modified) from Judy Bishop’s Java
Gently.

• A chat server program is running on some machine
listening on a specified port. When it gets a request for
connection, it creates a thread which adds the new client to
a list of clients and reads on a stream from that client.

• When a client types something, this message is read by the
server and broadcast to all other clients.

• We don’t have to implement a protocol since we use a
ready made one: telnet. Clients are also just people
telnetting in and chatting, not programs.

Lecture 12: networking 18

ChatServer

import java.io.*;

import java.net.*;

import java.util.*;

public class ChatServer {

 private static LinkedList clientList =
new LinkedList();

 private static int id = 0;

10

Lecture 12: networking 19

ChatServer contd.

static synchronized void broadcast(String

message, String name) throws IOException{

 Socket s;

 PrintWriter p;

 for (int i = 0; i < clientList.size();
i++) {

 s = (Socket)clientList.get(i);

 p = new PrintWriter (

 s.getOutputStream(), true);

 p.println(name+": "+message); }}

Lecture 12: networking 20

ChatServer contd.

static synchronized void remove(Socket s)
{

 clientList.remove(s);

 id--;

 }

11

Lecture 12: networking 21

ChatServer contd.

public static void main(String[] args)
throws IOException {

//Get the port and create a socket there.

int port = 8190; // default

if (args.length > 0)

 port = Integer.parseInt(args[0]);

ServerSocket listener = new
ServerSocket(port);

System.out.println("The Chat Server is
running on port "+port);

Lecture 12: networking 22

ChatServer contd.

 // Listen for clients.

// Start a new handler for each.

// Add each client to the list.

while (true) {

 Socket client = listener.accept();

 new ChatHandler(client).start();

 System.out.println("New client no."+id+

 " on client's port "+client.getPort());

 clientList.add(client);

 id++; } } // end while and end main()

12

Lecture 12: networking 23

ChatHandler

class ChatHandler extends Thread {

 private BufferedReader in;

 private PrintWriter out;

 private Socket toClient;

 private String name;

 ChatHandler(Socket s) {

 toClient = s;

 }

Lecture 12: networking 24

ChatHandler continued

public void run() {

 try {

 in = new BufferedReader(

 new InputStreamReader(

 toClient.getInputStream()));

 out = new PrintWriter(

 toClient.getOutputStream(), true);

 out.println("*** Welcome to the Chatter
***");

 out.println("Type BYE to end");

13

Lecture 12: networking 25

ChatHandler continued

out.print("What is your name? ");

out.flush();

String name = in.readLine();

ChatServer.broadcast(name+" has joined
the discussion.", "Chatter");

Lecture 12: networking 26

ChatHandler continued

 while (true) {

 String s = in.readLine();

 if (s.startsWith("BYE")) {

 ChatServer.broadcast(name+" has left

 the discussion.", "Chatter");

 break;

 }

 ChatServer.broadcast(s, name);

} // end while

14

Lecture 12: networking 27

ChatHandler continued

 ChatServer.remove(toClient);

 toClient.close();

} catch (Exception e) {

 System.out.println("Chatter error:
"+e);

}}} // end catch, run(), class definition

Lecture 12: networking 28

Summary

• Java is highly suitable for networking and communication
over the Internet.

• java.net provides classes for URLs and sockets.

• A detailed case study of client/server application (cash
dispensers) can be found in Java Gently Chapter 14. More
examples can be found on
http://java.sun.com/docs/books/tutorial/networking/index.h
tml.

