
1

G51PRG:
Introduction to Programming

Second semester
Lecture 2

Natasha Alechina

School of Computer Science & IT

nza@cs.nott.ac.uk

Lecture 2: Objects 2

Remedial classes

• Monday 3-5 in A32

• Contact Yan Su (yxs)

• Ordinary labs start on Tuesday

Lecture 2: Objects 3

Plan of the lecture

• Classes and objects

• Constructors

• Creating objects

• Comparing objects

• Copying objects

Lecture 2: Objects 4

Classes and Objects

• Classes are blueprints for objects

• They contain information on

– which properties objects have (fields)

– what they can do (methods)

Lecture 2: Objects 5

Example: Point class

class Point {
 int x,y;
 public Point(int x, int y){
 this.x = x;
 this.y = y;
 }
 public double distance(Point p){
 return Math.sqrt(Math.pow((p.x-x),2)
 + Math.pow((p.y-y),2));
// distance = √√√√((p.x-x)2 + (p.y-y)2)
 }}

Lecture 2: Objects 6

Example: Person class

class Person {

 String name;
 int age;

 Person(String name, int age){

 this.name = name;

 this.age = age;

 }

 void display() {

 System.out.println(name + ", " +
age);}

}

2

Lecture 2: Objects 7

Constructors

• Usually a class has at least one method which is used to
create instances of a class (objects). It is called a
constructor .

• Constructor has the same name as the class. A class can
have several constructors with different sets of parameters.

• Usually they set all or some of the fields in the class to
values passed as parameters.

Lecture 2: Objects 8

Example: two constructors

class Point {

 int x,y;

 public Point(int x, int y){

 this.x = x;

 this.y = y;
 }
 public Point () {

 this.x = this.y = 0;

 }

}

Lecture 2: Objects 9

Example: default constructor

 public Person(){

 }

(would set default values null for String name and 0 for
int age).

Lecture 2: Objects 10

Creating objects

Point p1;

Declares a variable of type Point. Does not allocate memory.

Empty reference (refers to null object).

Point p1 = new Point(4,5);

 Allocates memory (with “new”), executes the constructor.

Now p1 is a reference which points to the new object.

Lecture 2: Objects 11

Before we go further… quiz:

Point p1;

System.out.println(p1.x);

// what will happen if you compile this?

Point p1 = null;

System.out.println(p1.x);

// what will happen if you compile this?

// what wil happen when you execute this?

Lecture 2: Objects 12

What happens when objects are
constructed
Need to understand the difference between objects and basic

types (boolean, char, byte, short, int, long, double, float).

3

Lecture 2: Objects 13

Basic types

Basic type variables contain their value:

int x = 4

x 4

Lecture 2: Objects 14

Reference types

• Person, Point, String etc. are reference type
variables.

• The value of a reference type variable is a reference to (an
address of) the value or set of values represented by the
variable.

Lecture 2: Objects 15

Creating objects

p1

x

y 5

Point
object

4

ref

Lecture 2: Objects 16

Example

Person person1 = new Person("Bill", 51);

Note that Strings are also objects (reference types).

Lecture 2: Objects 17

Person object

person1

name

age 51

Person
object String

object

“Bill”
ref

ref

Lecture 2: Objects 18

Why does this matter?

• Reference type and basic type variables behave differently
with respect to assignment and comparison.

• If you don’t know that you will often be surprised at what
your programs do.

4

Lecture 2: Objects 19

Comparing objects

The following comparison:

person1 == person2

returns true if the references are to the same storage locations,
and false otherwise. For example,

Person person1 = new Person("Bill", 51);

Person person2 = new Person("Bill", 51);

System.out.println(person1 == person2);

would print false , although the values of all fields in person1
and person2 are the same.

Lecture 2: Objects 20

Equality

Suppose we want to find out whether object1 and object2 are
equal (have the same values for all fields). Then we need
to write a special method equals which compares objects
of a given class. For example,

boolean equals (Person p) {

 return (this.name.equals(p.name) &&

 this.age == p.age);

}

 Recall that String class has equals() method.

Lecture 2: Objects 21

Assignment

person2 = person1;

results in person2 referring to the same locations as person1.
If we change the values of person1's fields, the same
changes will happen to person2 (because they refer to the
same locations in memory).

person1

person2

ref

ref

Lecture 2: Objects 22

Example

int[] array1 = {1,2,3,4};

int[] array2 = array1;

array1[0] = 0; // instead of 1

System.out.println(array2[0]);

// will print 0 although we “only”

// changed the other array!

This is because arrays are reference types.

Lecture 2: Objects 23

Example

int[] array1 = {1,2,3,4};

int[] array2 = array1;

array1 ref 1 2 3 4

array1 ref 1 2 3 4

array2 ref

Lecture 2: Objects 24

Example

array1[0] = 0; // instead of 1

array1 ref 0 2 3 4

array2 ref

5

Lecture 2: Objects 25

Making a separate copy

• Later in the course we will study cloning of objects.

• You can write a copy method yourself, for example:

public Person copy() {

 String newName = new String(this.name);

 String newAge = this.age;

 return new Person(newName, newAge);

}

Lecture 2: Objects 26

To sum up

If x and y are variables of basic type,

• x = y means: "put the same value as y holds, in x's
location"

• x == y means: "do x and y hold the same value?"

 If x and y are variables of object / reference type

• x = y means: "get y to refer to the same location in
memory as x"

• x == y means: "do x and y have the same address?"

Lecture 2: Objects 27

Summary and further reading

• In this lecture, we recalled how to create objects and how
objects are stored.

• It is important to understand that objects are stored as
references, and how this affects comparison and
assignment of objects. The reason objects are passed by
reference, by the way, is that they can be very large and it
is much more efficient to manipulate references than to
copy around huge amounts of data.

• Reading: Java Gently Chapter 8 and Sun Java tutorial

http://java.sun.com/docs/books/tutorial/java/data/objects.html

