
1

G51PRG:
Introduction to Programming

Second semester
Lecture 5

Natasha Alechina

School of Computer Science & IT

nza@cs.nott.ac.uk

Lecture 5: Polymorphism 2

Previous lecture

• Overriding methods

• Shadowing/hiding fields

• Polymorphism

2

Lecture 5: Polymorphism 3

Plan of the lecture

• final keyword

• Casting objects

• More on polymorphism

• Object class

• Wrapper classes

Lecture 5: Polymorphism 4

Overriding methods; final keyword

• Class B extends A

• B inherits methods from A

• B may override (change implementations of) methods from
A.

• Some methods cannot be overridden:

– private methods;

– static methods;

– methods declared as final .

• A class declared as final cannot be extended.

3

Lecture 5: Polymorphism 5

final keyword

• You already saw final used in declarations of variables
which cannot be changed in the program (e.g. constants).

final double pi = 3.14;

…

pi = 4.0;

will cause a compiler error.

• Another use of final is to prevent overriding
methods/changing class definitions.

• Reasons for doing this: preventing errors, efficiency and
(later in the lecture) security.

Lecture 5: Polymorphism 6

Casting

• Casting is explicitly converting from one data type to
another data type.

• For example, we can cast an int as a double or a double as
an int (loosing information in the latter case).

• We can also cast one Object type as another.

4

Lecture 5: Polymorphism 7

Widening conversions (basic types)

• Widening conversions: from a type which uses less
memory to a type which uses more memory. For example,
from byte to int, from int to long, float or double. No
information gets lost.

char a = `a`;

int i = (int) a;

• May even skip casting:

int i = a;

Lecture 5: Polymorphism 8

Narrowing conversions (basic types)

• Narrowing conversions: from a type which uses more
memory to a type which uses less. Information may get
lost, so in general such casts should be avoided.

 char c = (char) 10000000000000000;

// … bad things happen

5

Lecture 5: Polymorphism 9

Casting objects

• Suppose class B extends A

• Casting up the case hierarchy: a B type object as an A type
object - like a widening conversion - easy.

B bobj = new B(10);

A aobj = (A) bobj;

// don’t even need explicit cast

A aobj = bobj; // is OK

• Casting down, an A type object (parent) as a child - like a
narrowing conversion, tricky. Information may get lost.

Lecture 5: Polymorphism 10

Polymorphism: general rule

• Class B extends A

• all Bs are a special kind of As

• you can use Bs where As are expected.

6

Lecture 5: Polymorphism 11

Using Pixels where Points are
expected
Pixel pixel = new Pixel(5,6, Color.red);

Point p = pixel;

• Normally you assign an object of type Point to a variable
of type Point.

• But you can also assign a Pixel to a Point type variable.

• Here we omit casting because pixel is promoted up the
class hierarchy (Point is a parent class and pixel is
promoted to Point).

Lecture 5: Polymorphism 12

Using Points where Pixels are
expected
Pixel pixel = new Pixel(5,6, Color.red);

Point [] points = new Point[4];

points[0] = pixel;

Pixel q = (Pixel) points[0];

• To the compiler q = points[0] would look like you
are trying to assign a less informative object (Point) to a
more informative type variable (Pixel). That’s why you
need to put in an explicit cast.

• The compiler does not keep track of the actual type of
objects, for example that points[0] is in fact a Pixel.

• The runtime system does.

7

Lecture 5: Polymorphism 13

Runtime errors

Point [] points = new Point[4];

points[0] = new Point(5,6);

Pixel q = (Pixel) points[0];

• This will pass the compiler, same as the code before.

• The runtime system will throw
ClassCastNotSupportedException.

• Casting “real” Pixel to a Pixel will work.

• Casting a Point to a Pixel will not work.

Lecture 5: Polymorphism 14

Declared type and runtime type.

Point p = new Pixel(4,5,Color.blue);

• declared type of p is Point. Actual type is Pixel.
Point[] points = new Point[4];

points[0] = new Pixel(5,6, Color.red);

• declared type of points[0] is Point. Actual type is
Pixel.

• Declared type A: declaration of variable type is A; being
returned by a method whose return type is A. Compiler
checks declared types.

• Actual (runtime) type: which constructor was used to
construct the object. If constructor was B, then actual type
is B.

8

Lecture 5: Polymorphism 15

When casting succeeds

B newobj = (B) obj;

• Casting up the class hierarchy (B to B or up to A) always
succeeds.

• Casting down the class hierarchy (A down to B) will
succeed at run time if obj ’s actual type is B or a more
specific type.

• Otherwise the casting will fail (throw an exception).

Lecture 5: Polymorphism 16

Which implementation is used?

• If we look at Pixels and Points again, they both have
clear() method with different implementation (one sets
color field to null and another one does not).

• Which implementation is run if declared type of an object
does not match the actual type?

• When invoking a method on an object, actual class of the
object governs which implementation is used:

 Point p = new Pixel(5,6);

 p.clear()

 will use Pixel's version of clear().

9

Lecture 5: Polymorphism 17

Dynamic binding

• To find out which implementation to use, runtime system
has to keep track of the object's real type (the class lowest
in the hierarchy of which the object is an instance).

• This is useful, but introduces an overhead.

Lecture 5: Polymorphism 18

Using final for efficiency reasons

• If a method is declared final then there is no need to look
for its correct implementation at run time.

• Type checks become faster and can be done at compile
time. For final methods sometimes invocation can be
replaced with the actual body of the method (inlining),
e.g.:

 System.out.println(rose.getName());

• can be replaced with

 System.out.println(rose.name);

• if we know that getName() just returns the value of the
name field. Same for final fields: replace pi with 3.14.

10

Lecture 5: Polymorphism 19

Using final for security reasons

• For example, a validatePassword() method which
returns a boolean depending on whether password is
correct or not, should be declared final. Otherwise
someone may subclass its class to make a new version of
the method which always returns true.

• Fields which final methods rely on should be also final or
private, otherwise the method's behaviour can be changed
by changing the fields.

Lecture 5: Polymorphism 20

Access modifiers summary

• Increasing order of access:

– private

– default (same package or directory)

– protected = as default + subclasses

– public

• When subclassing, access modifiers should only be
changed to make more access.

11

Lecture 5: Polymorphism 21

Object class

• All classes extend the Object class and therefore inherit its
methods.

• Default constructor for the Object class is Object() which
sets all fields in an object to default values; reference type
fields such as Strings to null, numbers to 0.

• There are two groups of methods in the Object class:
general utility methods and methods which support
threads.

Lecture 5: Polymorphism 22

Some utility methods of Object

• Object clone() throws
CloneNotSupportedException - creates and
returns a copy of this object; usually need to override it.

• boolean equals(Object o) - indicates whether
some other object is equal to this one; usually need to
override it.

• Class getClass() - returns the runtime class of an
object.

12

Lecture 5: Polymorphism 23

Some utility methods of Object

• int hashCode() - returns a hash code value for the
object. (Which is a unique number for this object. This is
typically implemented by converting the internal address
of the object into an integer.)

• String toString() - returns a string representation
of the object. The toString() method for class Object
returns a string consisting of the name of the class of
which the object is an instance, the at-sign character `@',
and the unsigned hexadecimal representation of the hash
code of the object. So usually it is overridden to something
more useful...

Lecture 5: Polymorphism 24

Example

class Person {

 String name;

 int age;

 Person(String s, int n) {

 this.name = new String(s);

 this.age = n;

 }

 public Object clone() {

 return new Person(this.name, this.age);

 }}

13

Lecture 5: Polymorphism 25

Example: remarks

• Person extends Object (don’t need to put it in the class
definition);

• Strings are passed by reference, that’s why we duplicate
them in constructor

• we override the Object’s clone() method in the Person
class. Note that it still returns value of type Object

• when we override a method we don’t change its signature.
• Why we override it rather than write a new
Person clone()

• method: because lots of code written for Objects rely on
them having the right clone() method.

Lecture 5: Polymorphism 26

Hashtable class

• Hash table holds data items indexed by keys .

• Key is used to access the value, just as an array index is
used to access the corresponding element in the array.

• Hash table keys can be of any reference type (for example,
Strings).

hash(key1) (key1, value1)

hash(key2) (key2, value2)

14

Lecture 5: Polymorphism 27

Example

hash(“john”) (john, 9150001)

hash(“adam”) (adam, 9510010)

indices (key,value) pairs

Lecture 5: Polymorphism 28

Hashtable methods

• Object put(Object key, Object value)

• Object get(Object key) - returns the value

• boolean containsKey(Object key) - returns
true or false depending on whether there is an item with
such key in the table

• boolean containsValue(Object value) -
returns true or false depending on whether there is such a
value in the table

• Object remove(Object key) - removes item
with the specified key

15

Lecture 5: Polymorphism 29

Example Hashtable

Hashtable telephones = new Hashtable();

// put some telephones in a table

telephones.put(“john”, “9150001”);

telephones.put(“adam”, “9510010”);

String tel1 =

(String) telephones.get(“john”);

// will return John’s telephone number

// note that get() returns an Object so

// need to cast to String!

Lecture 5: Polymorphism 30

What about storing basic types?

• The trouble with Java Collections (such as Hashtable) is
that they are designed to store Objects.

• Hashtable works with any objects: Strings, Points,
Persons,… . But it does not have methods to store integers
or doubles.

• There is a workaround though - you can use Wrapper
classes.

16

Lecture 5: Polymorphism 31

Envelopes, or wrapper classes

• We can’t cast between basic types and objects.

• What do we do if we need to use a basic type where an
object is required?

• Define a new class and put the basic type value inside it as
a field. That's what "wrappers" or "envelopes” do: make an
object out of a basic type.

• There are Java classes for all basic types: byte, float and so
on: Boolean, Character, Byte, Short, Integer, Long, Float,
Double.

Lecture 5: Polymorphism 32

Two purposes of wrapper classes

• Make it possible to use basic types with classes which
handle objects. For example, we cannot store ints or use
them as keys in Hashtable, but can store an object of type
Integer.

• Provide home for useful methods associated with the basic
type. For example, Integer class has method

static int parseInt(String s)

• which given a string “2002” returns number 2002.

17

Lecture 5: Polymorphism 33

Some common methods of wrapper
classes
• A constructor which takes the primitive type and creates an

object of the type class (e.g. Character(char c));

• xxxxValue() (where xxxx is the primitive type, e.g.
Character.charValue() and
Boolean.booleanValue()) returns the value of the
basic type stored in the object.

Lecture 5: Polymorphism 34

Telephone example

• If we wanted to store telephones as ints:

Hashtable tels = new Hashtable();

tels.put(“john”, new Integer(9150001));

tels.put(“adam”, new Integer(9510010));

• Which way to get tel number as an int is correct?

int tel1 = (tels.get(“john”)).intValue();

int tel2 = (Integer) tels.get(“john”);

int tel3 =

((Integer) tels.get(“john”)).intValue();

18

Lecture 5: Polymorphism 35

Next lecture

• Abstract classes

• Interfaces

• Collections in Java

Lecture 5: Polymorphism 36

Summary and further reading

• Polymorphism allows to relax type checking

• Occasionally need casting. Casting to a less specific type
(up the class hierarchy) is easy. Casting down may cause
errors.

• Run time system keeps track of the actual type of each
object and chooses appropriate method implementation.

• Sun Java tutorial:

http://java.sun.com/docs/books/tutorial/java/javaOO/index.ht
ml

