G51PRG:
Introduction to Programming
Second semester
Lecture 5

Natasha Alechina
School of Computer Science & IT
nza@s. nott. ac. uk

Previous lecture
* Overriding methods

 Shadowing/hiding fields
* Polymorphism

Lecture 5: Polymorphism 2

Plan of the lecture

« final keyword

¢ Casting objects

* More on polymorphism
* Object class

* Wrapper classes

Lecture 5: Polymorphism

Overriding methods; final keyword

e ClassB extends A
¢ B inherits methods from A

* B may override (change implementations of) methods from
A.

» Some methods cannot be overridden:
— private methods;
— static methods;
— methods declared asfinal .
» A classdeclared as final cannot be extended.

Lecture 5: Polymorphism 4

final keyword

* You aready saw final used in declarations of variables
which cannot be changed in the program (e.g. constants).

final double pi = 3.14;

pi = 4.0;
will cause acompiler error.

* Another use of final isto prevent overriding
methods/changing class definitions.

» Reasonsfor doing this: preventing errors, efficiency and
(later in the lecture) security.

Lecture 5: Polymorphism

Casting

» Cadting is explicitly converting from one data type to
another data type.

» For example, we can cast an int as adouble or adouble as
an int (loosing information in the latter case).

* We can also cast one Object type as another.

Lecture 5: Polymorphism

Widening conversions (basic types)

* Widening conversions: from atype which uses less
memory to atype which uses more memory. For example,
from byte to int, from int to long, float or double. No
information gets lost.

char a = "a’;

int i =(int) a

* May even skip casting:
int i = a

Lecture 5: Polymorphism 7

Narrowing conversions (basic types)

« Narrowing conversions. from atype which uses more
memory to atype which uses less. Information may get
lost, soin genera such casts should be avoided.

char ¢ = (char) 10000000000000000;
/1 ...bad things happen

Lecture 5: Polymorphism 8

Casting objects

¢ Suppose class B extends A

¢ Casting up the case hierarchy: a B type object asan A type
object - like awidening conversion - easy.

B bobj = new B(10);

A aobj = (A) bobj;

/1 don't even need explicit cast

A aobj = bobj; // is K

¢ Casting down, an A type object (parent) asachild - likea
narrowing conversion, tricky. Information may get lost.

Lecture 5: Polymorphism 9

Polymorphism: general rule
* ClassB extends A

« dl Bsareaspecia kind of As
* you can use Bs where As are expected.

Lecture 5: Polymorphism 10

Using Pixels where Points are

expected

Pi xel pixel = new Pixel (5,6, Color.red);

Point p = pixel;

« Normally you assign an object of type Point to avariable
of type Point.

« But you can also assign a Pixel to a Point type variable.

* Here we omit casting because pixel is promoted up the
class hierarchy (Point is a parent class and pixel is
promoted to Point).

Lecture 5: Polymorphism 11

Using Points where Pixels are
expected

Pi xel pixel = new Pixel (5,6, Color.red);

Point [] points = new Point[4];

poi nts[0] = pi xel;

Pi xel g = (Pixel) points[0];

e Tothecompilerq = poi nts[0] wouldlook likeyou
aretrying to assign alessinformative object (Point) to a

more informative type variable (Pixel). That'swhy you
need to put in an explicit cast.

* The compiler does not keep track of the actual type of
objects, for example that points[0] isin fact a Pixel.

* The runtime system does.

Lecture 5: Polymorphism 12

Runtime errors

Point [] points = new Point[4];

poi nts[0] = new Point (5, 6);

Pi xel g = (Pixel) points[0];

* Thiswill pass the compiler, same as the code before.

* The runtime system will throw
ClassCastNotSupportedException.

¢ Casting “real” Pixel to aPixel will work.
¢ Casting aPoint to a Pixel will not work.

Lecture 5: Polymorphism 13

Declared type and runtime type.

Point p = new Pi xel (4,5, Col or. bl ue);

 declared type of pisPoint. Actual typeis Pixel.

Poi nt[] points = new Point[4];

poi nts[0] = new Pixel (5,6, Color.red);

e declared typeof poi nts[0] isPaint. Actual typeis
Pixel.

» Declared type A: declaration of variable typeis A; being

returned by a method whose return typeis A. Compiler
checks declared types.

» Actual (runtime) type: which constructor was used to
construct the object. If constructor was B, then actual type
isB.

Lecture 5: Polymorphism 14

When casting succeeds
B newobj = (B) obj;

« Casting up the class hierarchy (B to B or up to A) always
succeeds.

¢ Casting down the class hierarchy (A down to B) will
succeed at runtimeif obj ’sactua typeisB or amore

specific type.
« Otherwise the casting will fail (throw an exception).

Lecture 5: Polymorphism 15

Which implementation is used?

« If welook at Pixels and Points again, they both have
clear() method with different implementation (one sets
color field to null and another one does not).

* Which implementationisrun if declared type of an object
does not match the actua type?

* When invoking a method on an object, actual class of the
object governs which implementation is used:

Point p = new Pixel (5, 6);
p.clear()
will use Pixel's version of clear().

Lecture 5: Polymorphism 16

Dynamic binding

« Tofind out which implementation to use, runtime system
has to keep track of the object's real type (the class lowest
in the hierarchy of which the object is an instance).

¢ Thisisuseful, but introduces an overhead.

Lecture 5: Polymorphism 17

Using final for efficiency reasons

» If amethod is declared final then there is no need to look
for its correct implementation at run time.

» Type checks become faster and can be done at compile
time. For final methods sometimes invocation can be
replaced with the actual body of the method (inlining),
eg.

System out . println(rose. get Narre());

 can bereplaced with

System out . println(rose. nane);

« if weknow that get Nane() just returnsthe value of the

name field. Same for final fields: replace pi with 3.14.

Lecture 5: Polymorphism 18

Using final for security reasons

* For example, aval i dat ePasswor d() method which
returns a boolean depending on whether password is
correct or not, should be declared final. Otherwise
someone may subclassits class to make a new version of
the method which always returns true.

« Fields which final methods rely on should be aso fina or
private, otherwise the method's behaviour can be changed
by changing the fields.

Lecture 5: Polymorphism 19

Access modifiers summary
* Increasing order of access:
- private
— default (same package or directory)
— protected = as default + subclasses

— public

» When subclassing, access modifiers should only be
changed to make more access.

Lecture 5: Polymorphism 20

Object class

« All classes extend the Object class and therefore inherit its
methods.

« Default constructor for the Object class is Object() which
setsall fields in an object to default values; reference type
fields such as Strings to null, numbers to 0.

¢ There are two groups of methods in the Object class:
genera utility methods and methods which support
threads.

Lecture 5: Polymorphism 21

Some utility methods of Object

* (Object clone() throws
Cl oneNot Suppor t edExcepti on - creates and
returns a copy of this object; usually need to override it.

e bool ean equal s(Obj ect o) -indicates whether
some other object is equal to this one; usualy need to
override it.

e O ass getd ass() - returnsthe runtime class of an
object.

Lecture 5: Polymorphism 22

Some utility methods of Object

e int hashCode() - returnsahash code valuefor the
object. (Which is aunique number for this object. Thisis
typically implemented by converting the internal address
of the object into an integer.)

e String toString() - returnsastring representation
of the object. Thet oSt ri ng() method for class Object
returns a string consisting of the name of the class of
which the object is an instance, the at-sign character *@',
and the unsigned hexadecimal representation of the hash
code of the object. So usually it is overridden to something
more useful...

Lecture 5: Polymorphism 23

Example

cl ass Person {
String nane;
int age;
Person(String s, int n) {
this.name = new String(s);
this.age = n;
}
public Object clone() {
return new Person(this.nane, this.age);

1}

Lecture 5: Polymorphism 24

Example: remarks

* Person extends Object (don’t need to put it in the class
definition);

 Strings are passed by reference, that’s why we duplicate
them in constructor

« we override the Object’ s clone() method in the Person

Hashtable class

» Hash table holds data items indexed by keys.
» Key isused to accessthevalue, just asan array index is

used to access the corresponding element in the array.

» Hash table keys can be of any referencetype (for example,

class. Note that it still returns value of type Object Strings).
. Whenweoverrlde.amethodwedt)-ntchangeltssgnature. hash(key1) (key1, valuel)
* Why we override it rather than write a new
Per son cl one()
« method: because lots of code written for Objects rely on
them having the right clone() method. hash(key2) (key2, value2)
Lecture 5: Polymorphism 25 Lecture 5: Polymorphism 26
Example Hashtable methods
e (bj ect put(Object key, Object value)
* (bj ect get(Object key) -returnsthevalue
indices (key,value) pairs » bool ean contai nsKey(Cbj ect key) - returns
true or false depending on whether thereis an item with
hash(“john”) (john, 9150001) such key inthetable
e bool ean cont ai nsVal ue(Oj ect val ue) -
returns true or false depending on whether thereis such a
h . . value in the table
asn(*adam’) (adam, 9510010) e (bj ect renpve(Object key) - removesitem
with the specified key
Lecture 5: Polymorphism 27 Lecture 5: Polymorphism 28

Example Hashtable

Hasht abl e tel ephones = new Hashtabl e();
/1 put some tel ephones in a table

t el ephones. put (“j ohn”, “9150001");

t el ephones. put (“adani, “9510010");
String tell =

(String) tel ephones. get(“john”);

/1 will return John’s tel ephone nunber
/1 note that get() returns an Cbject so
/1 need to cast to String!

Lecture 5: Polymorphism 29

What about storing basic types?

* Thetrouble with Java Collections (such as Hashtable) is
that they are designed to store Objects.

» Hashtable works with any objects: Strings, Points,
Persons,... . But it does not have methods to store integers
or doubles.

» Thereisaworkaround though - you can use Wrapper
classes.

Lecture 5: Polymorphism 30

Envelopes, or wrapper classes

* Wecan't cast between basic types and objects.

* What do we do if we need to use a basic type where an
object is required?

« Defineanew class and put the basic type value inside it as
afield. That'swhat "wrappers" or "envelopes’ do: make an
object out of abasic type.

¢ Thereare Javaclasses for al basic types: byte, float and so
on: Boolean, Character, Byte, Short, Integer, Long, Float,
Double.

Lecture 5: Polymorphism 31

Two purposes of wrapper classes

* Makeit possible to use basic types with classes which
handle objects. For example, we cannot store ints or use
them as keys in Hashtable, but can store an object of type
Integer.

* Provide home for useful methods associated with the basic
type. For example, Integer class has method
static int parselnt(String s)

» which given astring “2002" returns number 2002.

Lecture 5: Polymorphism 32

Some common methods of wrapper
classes

« A constructor which takes the primitive type and creates an
object of thetype class (e.g. Char act er (char c));

« xxxxVal ue() (wherexxxx isthe primitive type, e.g.
Char act er. char Val ue() and
Bool ean. bool eanVal ue()) returns the value of the
basic type stored in the object.

Lecture 5: Polymorphism 33

Telephone example

 If we wanted to store telephones asiints:

Hashtabl e tel s = new Hashtabl e();
tels.put(“john”, new Integer(9150001));
tel s. put (“adanf, new Integer(9510010));

» Which way to get tel number asanint is correct?

int tell = (tels.get(“john”)).intValue();
int tel2 (I'nteger) tels.get(“john”);
int tel3 =

((I'nteger) tels.get(“john”)).intValue();

Lecture 5: Polymorphism 34

Next lecture

¢ Abstract classes
« Interfaces
¢ Collectionsin Java

Lecture 5: Polymorphism 35

Summary and further reading

» Polymorphism allows to relax type checking

» Occasionally need casting. Casting to aless specific type
(up the class hierarchy) is easy. Casting down may cause
errors.

¢ Run time system keeps track of the actual type of each
object and chooses appropriate method implementation.

e SunJavatutorial:

http://java.sun.com/docs/books/tutorial/javaljavaOO/index.ht
ml

Lecture 5: Polymorphism 36

