
1

G51PRG:
Introduction to Programming

Second semester
Lecture 10

Natasha Alechina

School of Computer Science & IT

nza@cs.nott.ac.uk

Lecture 10: revision 2

Previous lecture: I/O

• I/O in Java

• Streams

• Reading, writing, handling exceptions

• Files

• Parsing

Lecture 10: revision 3

This lecture: revision using exercise 2

• Reference types (passing by reference vs by value)

• Extending classes, superconstructing, overriding methods

• Abstract classes

• Polymorphism

• Implementing interfaces

Lecture 10: revision 4

Reference types

• Objects are reference types

• Object type variables contain an address in memory of an
object (not the object itself).

• This is different from basic types such as ints where
variables actually contain a value.

5int x

basic type:

addrString s

reference type:

string
object

Lecture 10: revision 5

Reference types: consequences

• object1 == object2 means `do object1 and
object2 have the same address in memory?’

• object1.equals(object2) means are they equal,
for example do they have the same values of all fields?

• For two Strings string1 and string2,
string1.equals(string2) means, do they have
the same characters in the same sequence?

• string1 == string2 means `are string1 and
string2 stored at the same address in memory?’

Lecture 10: revision 6

Exercise 2: checking for user input

String str = “ “;

while (true) { // prompt and read

 UserInput.prompt("Enter Book, Article,
TechReport or Exit: ");

 str = UserInput.readString();

 // test if the user wants to quit

 if (str.equals("Exit")) break;

 if (str.equals("Book")) {

 UserInput.prompt("Enter the author: ");

2

Lecture 10: revision 7

Exercise 2: class hierarchy

Publication class

Article class Book class TechReport class

abstract???

Lecture 10: revision 8

Publication class design

• Obvious things first: Publication class should have fields
String author, String title, String year, and a constructor
which sets them.

• Do we declare them as private? Depends on whether you
want to access them directly (e.g. not via methods inherited
from the parent or constructor of the parent) in the
children.

– If yes (you need to access author field in subclasses for
example) - declare them protected.

– If not, you may just as well declare them private.

Lecture 10: revision 9

Publication class: fields and
constructor
// instance fields:

protected String author, title, year;

// constructor:

public Publication(String a, String t,
String y) {

 this.author = new String(a);

 this.title = new String(t);

 this.year = new String(y);

}

// why not this.author = a; ?

Lecture 10: revision 10

Reference types again

this.author = new String(a);

this.author = a;

this.author

a

this.author

a

Lecture 10: revision 11

Reference types: assignment

object1 = object2;

means: make object1 refer to the same address in memory
as object2.

If object2 gets changed, so will object2, and vice versa
(since they refer to the same object).

This may lead to unpredictable behaviour of the program.
Instead of assignment, it is safer to do cloning or
duplication which involves allocation of new memory, as
in

this.author = new String(a);

Lecture 10: revision 12

Publication class design continued

• Since Books, Articles and TechReports should all have
toHTML() method, the best place to put it in is the parent
Publication class.

• This does not guarantee that we can write the method once
or even that we can write some useful part of the method,
but we can use inheritance polymorphism: when we have
an array or vector of mixed Publications, we can call
toHTML() method on each of them without checking if it’s
a Book, an Article or a TechReport.

3

Lecture 10: revision 13

toHTML() in Publication class

• Options:

– don’t implement it; declare it abstract; declare
Publication class abstract.

– Implement a method which can be useful for at least
some subclasses, for example Article and TechReport.
They both require author and title fields in default font
so parent class implementation can be used to provide
the beginning of the string. The class can still be
declared abstract if you like.

• Both options valid.

Lecture 10: revision 14

toHTML() in Publication class

• Since I am lazy I went for option 2:

public String toHTML() {

 return (author + title + ".");

}

• then in the TechReport and Article class we can do

public String toHTML() {

 return (super.toHTML() + " " +
institution + " Technical Report " +
number + ", " + year +".");

}, similarly for Article.

Lecture 10: revision 15

compareTo() in Publication class

• Finally, we are supposed to have all publications
implement Comparable. The natural thing is to get
Publication to implement Comparable.

• So Publication should have

public int compareTo(Object p)

 method.

Lecture 10: revision 16

Exercise 2: class hierarchy

Publication class

Article class Book class TechReport class

Comparable interface

Lecture 10: revision 17

Implementing Comparable

public class Publication implements
Comparable {

// fields

// constructor

// toHTML()

 public int compareTo(Object p) {

 return this.author.compareTo(

 ((Publication)p).author);

 }

} // use compareTo() method of Strings

Lecture 10: revision 18

Implementing interfaces in general

• Perhaps you noticed that Strings have both

String compareTo(String s) and

Object compareTo(String s) methods, which as
you would expect do the same thing. String has been
retrofitted to implement Comparable, just as Vector has
been retrofitted to implement List.

• So the class itself did not get any extra functionality, but
now Strings can be used in methods written for
Comparable type objects.

4

Lecture 10: revision 19

Marker interfaces

• Some interfaces such as Cloneable are so called marker
interfaces : they do not declare any methods (clone() is
inherited from Object).

• A class implements the Cloneable interface to indicate to
the Object.clone() method that it is legal for that method to
make a field-for-field copy of instances of that class.

Otherwise clone() throws CloneNotSupportedException.

• clone() can be overridden to produce a deep copy rather
than shallow copy which Object.clone() does (it
instantiates all fields of the new Object to the same things
which the cloned object has, so they may share reference
fields).

Lecture 10: revision 20

Subclasses

• Subclasses have extra fields;

• Need to write constructors; use superconstructing as in the
previous exercise;

• Overwrite toHTML() (in Book completely, in Article and
TechReport can use a bit of super.toHTML());

• Don’t have to implement compareTo() in subclasses at all!

Lecture 10: revision 21

Example: Book class

public class Book extends Publication {
 String publisher;
 public Book(String a, String t, String
p, String y){

 super(a,t,y);
 this.publisher = new String(p);
 }
 public String toHTML() {
 return (author + ". " + "<i>" + title +
"</i>" + ". " + publisher + ", " + year
+ ".”);

 }
}

Lecture 10: revision 22

Finally: Tester class main()

• declare a Vector or other List and some String variables
• loop while(true)
• ask for user input (Article, Book, TechReport, Exit)
• match it using equals(), not = = to one of the four options
• if does not match anything, complain
• if matches Exit, break out of the loop
• if matches Book, prompt for 4 strings, pass them to Book

constructor, create a Book object, insert it in the list
• similarly for Article and TechReport
• after the loop, call sort on the list
• print the list to the screen

Lecture 10: revision 23

Scheme of things

Vector list = new Vector();

String str = " ";

String a, t, y, p, j, v, n, i;

while (true) {

 // prompt for Article, Book etc.

 // read input into str

 // if does not match, complain

 if (str.equals(“Exit”)) break;

 if (str.equals(“Book”)) …
}
// sort; print

Lecture 10: revision 24

If the user types “Book”

if (str.equals("Book")) {

 UserInput.prompt("Enter the author: ");

 a = UserInput.readString();

 UserInput.prompt("Enter the title: ");

 t = UserInput.readString();

 UserInput.prompt("Enter the publisher:
");

 p = UserInput.readString();

 UserInput.prompt("Enter the year: ");

 y = UserInput.readString();

 list.add(new Book(a,t,p,y));

5

Lecture 10: revision 25

Calling sort() and printing

Collections.sort(list);

for (int k = 0; k < list.size(); k++){

 System.out.println(

((Publication)list.elementAt(k)).toHTML()

);

}

We can do this because of polymorphism; someone wrote a
sort method which works for Publications just because
they implement Comparable; we can keep various
publications together because they are all Publications.

Lecture 10: revision 26

New exercise: Bibtex

• BiBTeX is a popular bibliography file format.

• The exercise is to read a bibtex file, parse it into entries,
and produce a corresponding file in HTML with entries
sorted alphabetically by author. If the file is in a wrong
format, throw BadBibtexException.

• You may use the previous exercise, but do not have to.

• Extensions: style sheets (how html should look like); .bst
files which bibtex uses may be a bit too complicated so
feel free to define your own style formats. Relaxing the
expected format of bibtex file, e.g. attributes in any order,
upper or lower case...

Lecture 10: revision 27

Suggested method (don’t have to!)

• Take a Bibtex file as an input;

• read the content of the file (to a String; see last lecture…)

• parse it into entries (see last lecture)

• create Publication objects from those entries, put them in
some data structure, sort them (use the previous exercise)

• produce a String from the alphabetical list of publications
in html and print it to output.html

Lecture 10: revision 28

How to submit

• Put all files in ~/Private/bibtex directory before the
deadline.

• If not receive a confirmation email or receive an email that
there was a problem, contact me.

• Generally don’t give extensions; if you missed an exercise
due to illness or other reasonable cause, get your tutor to
write to me and I will set you alternative coursework (open
in the last week of term, before the holiday, and open till
the start of revision week).

