G51PRG:
Introduction to Programming
Second semester
Lecture 3

Natasha Alechina
School of Computer Science & IT
nza@s. nott. ac. uk

Previous lecture

« basic typesin Java are passed by value

 objects are passed by reference

« this has consequences for making assignments and
comparisons between objects

Lecture 3: Static and Inheritance 2

Plan of the lecture

« static modifier : revision
« inheritance, extending classes

Lecture 3: Static and Inheritance 3

Static fields

» storagelocation for astatic field is created only once;

 doesnot depend on any object (it is shared by all objectsin
the class);
* can be accessed without having an instance of aclass.

Lecture 3: Static and Inheritance 4

Examples of uses

¢ Constantslike Mat h. PI

* Something which has the same value for all objectsin the
class; for example avariable to hold retirement age in class
Person should be declared static; it is the same for all
objectsin the class, so why duplicate it and waste memory

e Moreinteresting use: if we want a class to keep track of
how many instances of the class are created, or some other
class-level information, we need a static variable to hold it.

Lecture 3: Static and Inheritance 5

Example: counting instances

classlnvitation{
static int count;
String naneg;

Invitation(String nane){

thi s. name = nane;
count ++;

Lecture 3: Static and Inheritance 6

Example: other class properties

classlnvitation{

static String | ongest Nane;
String nang;
Invitation(String nane){

this. nane = nane;

if (nane.length() >

| ongest Narre. | engt h()){
| ongest Nane=narne;

Lecture 3: Static and Inheritance 7

Static methods

 do not depend on any object of the class;

» can be called without having to create an instance of a
class

Lecture 3: Static and Inheritance 8

Examples of static methods

e nmai n method is aways static

« any method which can work without having access to
instance fields, for example class Mat h hasa static
method

public static double sqrt(double a,
doubl e b)

which you can call when you need to compute a square root:

public doubl e distance(Point p){
return Math. sqrt(Math. pow((p. x-x),2) +
Mat h. pow((p.y-y),2)); }}

Lecture 3: Static and Inheritance 9

Examples of static methods contd.

If amethod returns the value of a static field, for examplein
the Person class we could have put a stetic field

private static int retirenentAge
and a static method
public static int retiresAt()

which returns the value of thisfield.

Lecture 3: Static and Inheritance 10

Retirement example

cl ass Person {

private static int retirenent Age = 65;

private int age;

private String nang;

public static int retiresAt() {
return retirenent Age;

}

public Person(String nane, int age){
this.name = new String(nane);
this.age = age; }

Lecture 3: Static and Inheritance 11

Retirement example contd.

public static void main(String[] args){
Person bill = new Person(“Bill”,51);
Person jane = new Person(“Jane”, 55);
Systemout.printin(retiresAt());
bill.retirement Age = 70;
System out. println(jane.retirenentAge);
Systemout.printin(retiresAt());

Lecture 3: Static and Inheritance 12

How it works

. retirementAge | 65
jond ol | °

Lecture 3: Static and Inheritance 13

How it works

bill

. retirementAge | 70
o 1| :

Lecture 3: Static and Inheritance 14

Extending classes (Inheritance)

« Extending classesis one of the main techniques of object-
oriented programming.

« Inanutshell, you write the code for class A. Then you
define aclass B which extends A: simplistically, this
means that B has all the code A has (you don't have to type
it again) and you can add additional fields and methods
which only B has. In other words, B inherits fields and
methods of A (not the ones which are declared private).

« Well see how inheritance really worksin thisand
subsequent lectures.

Lecture 3: Static and Inheritance 15

ext ends keyword

The general form for extending aclassis

cl ass Subcl ass extends Superclass {

Lecture 3: Static and Inheritance 16

Exanpl e

(Taken from: Ken Arnold and James Gosling, The Java
programming language, Second edition)
class Point {
public int x,vy;
public void clear() {
this.x
this.y

’

0;

}

class Pixel extends Point {
Col or col our;
}

Lecture 3: Static and Inheritance 17

Exanpl e conti nued

» Pixel classinheritsfields x and y and method clear() from
the Point class. We don't have to repeat the code for clear()
in the Pixel class.

 If inaprogram we crested a Pixel object then we can
accessitsx and y fields and call its clear() method.

Pi xel p = new Pixel ();

p.x = 2.0;
p.y = 1.0;
p.clear();

Lecture 3: Static and Inheritance 18

What is inherited

* Subclasses inherit those superclass members (fields and
methods) declared as public or protected.

* Subclasses inherit those superclass members declared with
no access specifier aslong as the subclassisin the same
package as the superclass.

« Constructors are not members and are not inherited.

Lecture 3: Static and Inheritance 19

Why use inheritance
* Why don't we just cut and paste the code into Pixel ?

* Why do we need the Point classif it contains strictly less
information than Pixel?

Lecture 3: Static and Inheritance 20

General use of extending classes

« Defineaclass (aparent class, or superclass) and then use it
to define a number of specialised classes based on it
(extending it). The specialised classes are called
subclasses, or children.

* The parent class holds all the methods which all its
children share. If you need to change their implementation
you only have to do this once.

¢ Classes are smdler and easier to understand and debug.

« All the code which is written to work with objects of the
parent class will work with the objects of children classes.

Lecture 3: Static and Inheritance 21

Writing the code once

 If you have amethod di st ance which calculates
distance between two Poi nt s, you can use the same
method for Pi xel s.
» Soif the Poi nt class contains
public doubl e distance(Point p){
return Math. sqrt(Math. pow((p.x-X), 2)
: + Math. pow((p.y-y),2));
e youcando
Pi xel p = new Pixel (4,5, Col or. green);
p. di stance(new Pi xel (5,6, Color.red));

Lecture 3: Static and Inheritance 22

Multiple inheritance?

¢ Canyou inherit from both a Point class and a Person class?
(Person with coordinates...)

e InJava(unlike e.g. C++) aclass cannot inherit from two
classes which are not themselves in subclass-superclass
relation.

« Inother words, class hierarchy forms atree.

Lecture 3: Static and Inheritance 23

Example: AWT (Abstract Windowing
Toolkit)

javalang.Object
|
+--java.awt.Component

+--java.awt.Container

+--java.awt.ScrollPane

Lecture 3: Static and Inheritance 24

Using the parent’s constructor

« Usually, aconstructor will need to set more values thanin
the parent class

« Can call super() to do the work which the constructor in
superclass does

« Using a constructor from asuperclassis called
superconstructing.

Lecture 3: Static and Inheritance 25

Using the parent’s constructor

* For example, if Point has the following constructor:
Point(int x, int y){
this.x X;
this.y y;
}

* Then we could add the following constructor to Pixel
Pixel (int x, int y, Color color){

super(Xx,Yy);
this.color = color;
}
Lecture 3: Static and Inheritance 26

Next lecture

¢ super keyword
« overriding methods
¢ polymorphism

« | have not yet covered everything you need for the first
exercise but you can do most of it (apart from overriding
thepri nt () method).

Lecture 3: Static and Inheritance 27

Summary and further reading
* Reading: Java Gently Chapter 9 and Sun Java tutorial

http://java.sun.com/docs/books/tutorial/javaljavaOO/index.ht
ml

Lecture 3: Static and Inheritance 28

