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Previous lecture

« basic typesin Java are passed by value

 objects are passed by reference

« this has consequences for making assignments and
comparisons between objects
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Plan of the lecture

« static modifier : revision
« inheritance, extending classes
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Static fields

» storagelocation for astatic field is created only once;

 doesnot depend on any object (it is shared by all objectsin
the class);
* can be accessed without having an instance of aclass.
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Examples of uses

¢ Constantslike Mat h. PI

* Something which has the same value for all objectsin the
class; for example avariable to hold retirement age in class
Person should be declared static; it is the same for all
objectsin the class, so why duplicate it and waste memory

e Moreinteresting use: if we want a class to keep track of
how many instances of the class are created, or some other
class-level information, we need a static variable to hold it.
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Example: counting instances

classlnvitation{
static int count;
String naneg;

Invitation(String nane){

thi s. name = nane;
count ++;
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Example: other class properties

classlnvitation{

static String | ongest Nane;
String nang;
Invitation(String nane){

this. nane = nane;

if (nane.length() >

| ongest Narre. | engt h()){
| ongest Nane=narne;
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Static methods

 do not depend on any object of the class;

» can be called without having to create an instance of a
class
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Examples of static methods

e nmai n method is aways static

« any method which can work without having access to
instance fields, for example class Mat h hasa static
method

public static double sqrt(double a,
doubl e b)

which you can call when you need to compute a square root:

public doubl e distance(Point p){
return Math. sqrt(Math. pow( (p. x-x),2) +
Mat h. pow((p.y-y),2)); }}
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Examples of static methods contd.

If amethod returns the value of a static field, for examplein
the Person class we could have put a stetic field

private static int retirenentAge
and a static method
public static int retiresAt()

which returns the value of thisfield.
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Retirement example

cl ass Person {

private static int retirenent Age = 65;

private int age;

private String nang;

public static int retiresAt() {
return retirenent Age;

}

public Person(String nane, int age){
this.name = new String(nane);
this.age = age; }
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Retirement example contd.

public static void main(String[] args){
Person bill = new Person(“Bill”,51);
Person jane = new Person(“Jane”, 55);
Systemout.printin(retiresAt());
bill.retirement Age = 70;
System out. println(jane.retirenentAge);
Systemout.printin(retiresAt());
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How it works

. retirementAge | 65
jond ol | °
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How it works

bill

. retirementAge | 70
o 1| :
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Extending classes (Inheritance)

« Extending classesis one of the main techniques of object-
oriented programming.

« Inanutshell, you write the code for class A. Then you
define aclass B which extends A: simplistically, this
means that B has all the code A has (you don't have to type
it again) and you can add additional fields and methods
which only B has. In other words, B inherits fields and
methods of A (not the ones which are declared private).

« Well see how inheritance really worksin thisand
subsequent lectures.
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ext ends keyword

The general form for extending aclassis

cl ass Subcl ass extends Superclass {
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Exanpl e

(Taken from: Ken Arnold and James Gosling, The Java
programming language, Second edition)
class Point {
public int x,vy;
public void clear() {
this.x
this.y

’

0;

}

class Pixel extends Point {
Col or col our;
}
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Exanpl e conti nued

» Pixel classinheritsfields x and y and method clear() from
the Point class. We don't have to repeat the code for clear()
in the Pixel class.

 If inaprogram we crested a Pixel object then we can
accessitsx and y fields and call its clear() method.

Pi xel p = new Pixel ();

p.x = 2.0;
p.y = 1.0;
p.clear();
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What is inherited

* Subclasses inherit those superclass members (fields and
methods) declared as public or protected.

* Subclasses inherit those superclass members declared with
no access specifier aslong as the subclassisin the same
package as the superclass.

« Constructors are not members and are not inherited.
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Why use inheritance
* Why don't we just cut and paste the code into Pixel ?

*  Why do we need the Point classif it contains strictly less
information than Pixel?
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General use of extending classes

« Defineaclass (aparent class, or superclass) and then use it
to define a number of specialised classes based on it
(extending it). The specialised classes are called
subclasses, or children.

* The parent class holds all the methods which all its
children share. If you need to change their implementation
you only have to do this once.

¢ Classes are smdler and easier to understand and debug.

« All the code which is written to work with objects of the
parent class will work with the objects of children classes.
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Writing the code once

 If you have amethod di st ance which calculates
distance between two Poi nt s, you can use the same
method for Pi xel s.
» Soif the Poi nt class contains
public doubl e distance(Point p){
return Math. sqrt(Math. pow( (p.x-X), 2)
: + Math. pow( (p.y-y),2));
e youcando
Pi xel p = new Pixel (4,5, Col or. green);
p. di stance(new Pi xel (5,6, Color.red));
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Multiple inheritance?

¢ Canyou inherit from both a Point class and a Person class?
(Person with coordinates...)

e InJava(unlike e.g. C++) aclass cannot inherit from two
classes which are not themselves in subclass-superclass
relation.

« Inother words, class hierarchy forms atree.
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Example: AWT (Abstract Windowing
Toolkit)

javalang.Object
|
+--java.awt.Component

+--java.awt.Container

+--java.awt.ScrollPane
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Using the parent’s constructor

« Usually, aconstructor will need to set more values thanin
the parent class

« Can call super() to do the work which the constructor in
superclass does

« Using a constructor from asuperclassis called
superconstructing.
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Using the parent’s constructor

* For example, if Point has the following constructor:
Point(int x, int y){
this.x X;
this.y y;
}

* Then we could add the following constructor to Pixel
Pixel (int x, int y, Color color){

super(Xx,Yy);
this.color = color;
}
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Next lecture

¢ super keyword
« overriding methods
¢ polymorphism

« | have not yet covered everything you need for the first
exercise but you can do most of it (apart from overriding
thepri nt () method).
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Summary and further reading
* Reading: Java Gently Chapter 9 and Sun Java tutorial

http://java.sun.com/docs/books/tutorial/javaljavaOO/index.ht
ml
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