
1

G51PRG:
Introduction to Programming

Second semester
Lecture 3

Natasha Alechina

School of Computer Science & IT

nza@cs.nott.ac.uk

Lecture 3: Static and Inheritance 2

Previous lecture

• basic types in Java are passed by value

• objects are passed by reference

• this has consequences for making assignments and
comparisons between objects

Lecture 3: Static and Inheritance 3

Plan of the lecture

• static modifier : revision

• inheritance, extending classes

Lecture 3: Static and Inheritance 4

Static fields

• storage location for a static field is created only once;

• does not depend on any object (it is shared by all objects in
the class);

• can be accessed without having an instance of a class.

Lecture 3: Static and Inheritance 5

Examples of uses

• Constants like Math.PI

• Something which has the same value for all objects in the
class; for example a variable to hold retirement age in class
Person should be declared static; it is the same for all
objects in the class, so why duplicate it and waste memory

• More interesting use: if we want a class to keep track of
how many instances of the class are created, or some other
class-level information, we need a static variable to hold it.

Lecture 3: Static and Inheritance 6

Example: counting instances

class Invitation{

 static int count;

 String name;

 Invitation(String name){

 this.name = name;

 count++;

 }

}

2

Lecture 3: Static and Inheritance 7

Example: other class properties

class Invitation{

 static String longestName;

 String name;

 Invitation(String name){

 this.name = name;

 if (name.length() >

 longestName.length()){

 longestName=name;
 }
 }
}

Lecture 3: Static and Inheritance 8

Static methods

• do not depend on any object of the class;

• can be called without having to create an instance of a
class

Lecture 3: Static and Inheritance 9

Examples of static methods

• main method is always static

• any method which can work without having access to
instance fields, for example class Math has a static
method

public static double sqrt(double a,
double b)

which you can call when you need to compute a square root:

public double distance(Point p){

 return Math.sqrt(Math.pow((p.x-x),2) +
Math.pow((p.y-y),2)); }}

Lecture 3: Static and Inheritance 10

Examples of static methods contd.

If a method returns the value of a static field, for example in

the Person class we could have put a static field

private static int retirementAge

and a static method

public static int retiresAt()

which returns the value of this field.

Lecture 3: Static and Inheritance 11

Retirement example

class Person {

 private static int retirementAge = 65;

 private int age;

 private String name;

 public static int retiresAt() {

 return retirementAge;

 }

 public Person(String name, int age){

 this.name = new String(name);

 this.age = age; }
Lecture 3: Static and Inheritance 12

Retirement example contd.

public static void main(String[] args){

 Person bill = new Person(“Bill”,51);

 Person jane = new Person(“Jane”,55);

 System.out.println(retiresAt());

 bill.retirementAge = 70;

 System.out.println(jane.retirementAge);

 System.out.println(retiresAt());

}

3

Lecture 3: Static and Inheritance 13

How it works

refbill

refjane
retirementAge 65

Lecture 3: Static and Inheritance 14

How it works

refbill

refjane
retirementAge 70

Lecture 3: Static and Inheritance 15

Extending classes (Inheritance)

• Extending classes is one of the main techniques of object-
oriented programming.

• In a nutshell, you write the code for class A. Then you
define a class B which extends A: simplistically, this
means that B has all the code A has (you don't have to type
it again) and you can add additional fields and methods
which only B has. In other words, B inherits fields and
methods of A (not the ones which are declared private).

• We'll see how inheritance really works in this and
subsequent lectures.

Lecture 3: Static and Inheritance 16

extends keyword

The general form for extending a class is

class Subclass extends Superclass {

Lecture 3: Static and Inheritance 17

Example

(Taken from: Ken Arnold and James Gosling, The Java
programming language, Second edition)

class Point {
 public int x,y;
 public void clear() {
 this.x = 0;
 this.y = 0;
 }
}
class Pixel extends Point {
 Color colour;
}

Lecture 3: Static and Inheritance 18

Example continued

• Pixel class inherits fields x and y and method clear() from
the Point class. We don't have to repeat the code for clear()
in the Pixel class.

• If in a program we created a Pixel object then we can
access its x and y fields and call its clear() method.

Pixel p = new Pixel();

p.x = 2.0;

p.y = 1.0;

p.clear();

4

Lecture 3: Static and Inheritance 19

What is inherited

• Subclasses inherit those superclass members (fields and
methods) declared as public or protected.

• Subclasses inherit those superclass members declared with
no access specifier as long as the subclass is in the same
package as the superclass.

• Constructors are not members and are not inherited.

Lecture 3: Static and Inheritance 20

Why use inheritance

• Why don't we just cut and paste the code into Pixel?

• Why do we need the Point class if it contains strictly less
information than Pixel?

Lecture 3: Static and Inheritance 21

General use of extending classes

• Define a class (a parent class, or superclass) and then use it
to define a number of specialised classes based on it
(extending it). The specialised classes are called
subclasses, or children.

• The parent class holds all the methods which all its
children share. If you need to change their implementation
you only have to do this once.

• Classes are smaller and easier to understand and debug.

• All the code which is written to work with objects of the
parent class will work with the objects of children classes.

Lecture 3: Static and Inheritance 22

Writing the code once

• If you have a method distance which calculates
distance between two Points, you can use the same
method for Pixels.

• So if the Point class contains
public double distance(Point p){
 return Math.sqrt(Math.pow((p.x-x),2)
 + Math.pow((p.y-y),2));
}

• you can do
Pixel p = new Pixel(4,5,Color.green);
p.distance(new Pixel(5,6,Color.red));

Lecture 3: Static and Inheritance 23

Multiple inheritance?

• Can you inherit from both a Point class and a Person class?
(Person with coordinates…)

• In Java (unlike e.g. C++) a class cannot inherit from two
classes which are not themselves in subclass-superclass
relation.

• In other words, class hierarchy forms a tree.

Lecture 3: Static and Inheritance 24

Example: AWT (Abstract Windowing
Toolkit)

java.lang.Object

 |

 +--java.awt.Component

 |

 +--java.awt.Container

 |

 +--java.awt.ScrollPane

5

Lecture 3: Static and Inheritance 25

Using the parent’s constructor

• Usually, a constructor will need to set more values than in
the parent class

• Can call super() to do the work which the constructor in
superclass does

• Using a constructor from a superclass is called
superconstructing.

Lecture 3: Static and Inheritance 26

Using the parent’s constructor

• For example, if Point has the following constructor:
Point(int x, int y){

 this.x = x;
 this.y = y;
 }

• Then we could add the following constructor to Pixel
Pixel(int x, int y, Color color){
 super(x,y);
 this.color = color;
 }

Lecture 3: Static and Inheritance 27

Next lecture

• super keyword

• overriding methods
• polymorphism

• I have not yet covered everything you need for the first
exercise but you can do most of it (apart from overriding
the print() method).

Lecture 3: Static and Inheritance 28

Summary and further reading

• Reading: Java Gently Chapter 9 and Sun Java tutorial

http://java.sun.com/docs/books/tutorial/java/javaOO/index.ht
ml

