G51PRG:
Introduction to Programming
Second semester
Lecture 11

Natasha Alechina
School of Computer Science & IT
nza@s. nott. ac. uk

This lecture: multiple concurrent
processes (threads)

Advanced topic, but avery good feature of Javal

e What isathread

e Why use multiple threads

* Issuesand problemsinvolved
» Javathreads

Lecture 11: threads 2

Example applications

« Many applications have to perform severa tasks
simultaneously.

« For example, on-line banking allows many people to
connect to the bank database simultaneously, so the server
program is doing many different things concurrently.

* Web browser allows you to scroll up and down the page
whileit is downloading images etc.: thisistwo things at
once.

* Notethat if the machine these programs are running on has
only one processor, they don’t really happen in parallel,
but are interleaved. If there are several processors then
they can be really executed in parallel.

Lecture 11: threads 3

What is a thread
Choose whatever definition you prefer:

» A thread is asequence of steps executed one at atime.

* A thread isasingle sequentia flow of control within a
program.

» A thread is a separately runnable subprocess.
« Other names: lightweight process, execution context.

Lecture 11: threads 4

Example
A single cash dispenser thread could do something like

* Read the bank card and pin code; if OK,

« Prompt the user with options

« If the option is to withdraw money, prompt for amount
 Dispense the required amount

« When the money is taken, update the user's balance:

current anmount = current anount - anount
wi t hdr awn

Lecture 11: threads 5

Why use multiple threads

* Inthe example above - obvious: cash dispensers should be
able to operate in parallel

* Insome cases (e.g. user interfaces) multiple threads are not
strictly necessary, but make the program much more
transparent and the resulting application much more
usable. Each independent task (such as scrolling or
downloading) can be programmed separately and can be
executed concurrently with other tasks.

Lecture 11: threads 6

Issues and problems involved
* racehazard

* starvation
¢ deadlock

Lecture 11: threads 7

Race hazard

* A race hazard occurs when several threads are racing each
other trying to access the same shared resource, and may
modify itinan interleaved way.

» For example, two people using two different cash
machines withdrawing money from the same account.

Lecture 11: threads 8

Race hazard example

Thread 1 Thread 2
withdraw 20 pounds
withdraw 30 pounds
balance = 300 pounds
balance = 300 pounds
new balance = 280 pounds
new balance = 270 pounds

Result: 50 pounds withdrawn, only 30 subtracted.

Lecture 11: threads 9

Cure: synchronisation

* Inthe example, threads 1 and 2 should be synchronised to
avoid interleaving.

» Thread 1 could have locked the account when it got the
request to withdraw money.

» All other threads which need to access the same account
would have to wait until Thread 1 is finished and the lock
isreleased.

Lecture 11: threads 10

Synchronisation example

Thread 1 Thread 2
withdraw 20 pounds
LOCK THE ACCOUNT
withdraw 30 pounds
ACCOUNT LOCKED
balance = 300 pounds
new balance = 280 pounds
RELEASE LOCK
LOCK THE ACCOUNT
balance = 280 pounds

new balance = 250 pounds
Lecture 11: threads 11

Other problems

» Starvation occurs when one or more threads are blocked
from gaining access to aresource and thus cannot make
progress.

» Deadlock occurs when two or more threads are waiting on
acondition that cannot be satisfied. For example, Thread 1
iswaiting for Thread 2 to give it resource A and Thread 2
iswaiting for Thread 1 to release resource B.

A system isfair when each thread gets enough access to
limited resource to make reasonable progress.

Lecture 11: threads 12

Lessons from race hazard
The threads should be able to
« lock an object (e.g. bank account)

« wait for aresource
« notify other threads when the resource is available

Lecture 11: threads 13

Thread class in Java

Constructors:
* Thread()

» Thread(Runnabler) (takes anything with arun() method
and turnsiit into a thread)

Lecture 11: threads 14

Thread class in Java continued

Methods:
e start() startthethread
* run() execute the sequence of steps the thread performs

* sleep(long tinme) throws InterruptedException
pauses for t i me milliseconds

e void setPriority(int newPriority):threads
may have different priority and scheduled accordingly.

e wait(), wait(long tinmeout), notify(),
noti fyAll () inherited from Object

« yield(): giveanother thread achanceto run

Lecture 11: threads 15

Creating a Thread in Java
Two waysto create a thread in Java:

» subclassthe Thr ead class and overrideitsr un()
method (the default implementation does nothing).
« implement Runnabl e interface (hasther un() method).

Lecture 11: threads 16

How to stop a thread

* stop() method is deprecated (because unsafe), do not
useit!

* Best of all isto arrange for the thread to return when it is
no longer needed.

Lecture 11: threads 17

Examples (from Arnold and Gosling)

» Onethread prints "ping" every 33 milliseconds, another
prints "PONG" every 100 milliseconds.

» Thefirst class, PingPongA, extends Thread.

* The second class, PingPongB, implements Runnable.

Lecture 11: threads 18

PingPongA

public class PingPongA extends Thread {
private String word; // what to print
private int delay; // howlong to pause

public PingPongA(String what ToSay, int
del ayTi nme) {
word = what ToSay;
del ay = del ayTi n®;

Lecture 11: threads 19

PingPongA continued

public void run() {

try {
for(;;) {
Systemout.print(word + " ");
sl eep(delay); // wait until next time
}
} catch (InterruptedException e) {
return; /1 end this thread
}
}

Lecture 11: threads 20

PingPongA use
public static void main(String[] args) {

new Pi ngPongA("pi ng", 33).start();
new Pi ngPongA("PONG', 100).start();

Lecture 11: threads 21

Note: start() rather than run()!

 If you want to create severa threadsin your program
which execute concurrently, do not call their run() method:
then all threads will run in order (first thread will run till it
returns, then the second thread, etc....).

» Call start() method: then al threads will start and their
run() methods will get achance to run concurrently.

Lecture 11: threads 22

PingPongA trace

pi ng PONG pi ng pi ng PONG ping ping ping
PONG

Lecture 11: threads 23

PingPongB

public class PingPongB inplenents

Runnabl e {

private String word; // what to print
private int delay; // how long to pause

public PingPongB(String what ToSay, int
del ayTi me) {
word = what ToSay;
del ay = del ayTi n®;

Lecture 11: threads 24

PingPongB continued

public void run() {

try {
for(;:) {
Systemout. print(wrd + " ");
Thr ead. sl eep(del ay);

}
} catch (InterruptedException e) {
return; /1 end this thread
}
}
Lecture 11: threads 25

PingPongB use

public static void main(String[] args) {
Runnabl e pi ng = new Pi ngPongB(" pi ng",
33);
Runnabl e pong = new Pi ngPongB(" PONG',
100);
new Thread(pi ng).start();
new Thread(pong).start();

}

Lecture 11: threads 26

Synchronized methods

« Blocks of code and methods which access the same object
from separate threads are called critical sections. They are
identified with synchronized keyword.

* For example,

public synchroni zed doubl e get Bal ance(){
return bal ance

» Thethread which called a synchronized method gets alock
on the object whose method was called. Other threads
cannot call a syncronized method on the same object until
the object is unlocked.

Lecture 11: threads 27

Synchronized statements

* Tolock an object without invoking a synchronized
method, synchronized statement can be used. It consists of
two parts: an object to be locked and a statement to execute
when the lock is obtained.

synchroni zed(bal ance) {

Lecture 11: threads 28

wait()

* Wait for some condition to become true:
synchroni zed voi d dowienCondi ti on() {
while (!condition) {
wai t();

}

Lecture 11: threads 29

notify()

» Téll other threads if you changed something they may be
interested in:

syncroni zed void changeCondition() {

change sone value used in a
condi tion test

noti fyAll();
}

Lecture 11: threads 30

Example: counter

« A counter class which has an integer variable (counter) and
two synchronised methods, increment() and decrement().

« A counter can be incremented up to 10 and decremented
down to O.

« Only onethread at atime has access to the counter, so
thereis no race hazard.

« Two kinds of threads, Incrementers and Decrementers.

« Incrementers call increment(), Decrementers call
decrement().

Lecture 11: threads 31

Example: Counter class

class Counter {
int counter;

public Counter(int i) {
counter = i;

}

Lecture 11: threads 32

Example: Counter class

public synchronized void increment() {

try {
whil e (counter >= 10) wait();

} catch (InterruptedException e) {
return;

}

count er ++;

noti fyAll();

Lecture 11: threads 33

Example: Counter class

public synchronized void decrenment() {

try {
while (counter <= 0) wait();

} catch (InterruptedException e) {
return;

}

counter--;

noti fyAll();

Lecture 11: threads 34

Example: Incrementer class

class Increnmenter extends Thread {
String nane;

Counter c;
Increnenter(String name, Counter q){
this.c = q;

thi s. name = nane;

Systemout.printin("Increnenter" +
name + " created");

}

Lecture 11: threads 35

Example: Incrementer class

public void run() {
whi | e(true){
c.increment();
Systemout. println(nane +
incremented the counter to "+c.counter);
try {
Thread. sl eep(10);

} catch (InterruptedException e){
return;

Lecture 11: threads 36

Decrementer is similar

public static void main(String[] args) {
Counter c¢c = new Counter (0);

new | ncrenenter("x",
new | ncrenenter("y",
new Decrenenter("z",
new Decrenenter("w',

Lecture 11: threads

c).
c).
c).
c).

start();
start();
start();
start();

37

Summary

» Threads are subprocesses running within the same
program.

» Threads can compete for resources; the programmer should
ensure fairness

» Threads can be synchronised, so that one thread gets
access to an object only when another is finished

» Threads can wait for one another and notify each other of
changes.

* New keyword: synchronized

* More details: Java Gently, Arnold and Gosling , Sun Java

Tutorial:http://java.sun.com/docs/books/tutorial/essential/thr eads
Lecture 11: threads 38

