
1

G51PRG:
Introduction to Programming

Second semester
Lecture 11

Natasha Alechina

School of Computer Science & IT

nza@cs.nott.ac.uk

Lecture 11: threads 2

This lecture: multiple concurrent
processes (threads)
Advanced topic, but a very good feature of Java!

• What is a thread

• Why use multiple threads

• Issues and problems involved

• Java threads

Lecture 11: threads 3

Example applications

• Many applications have to perform several tasks
simultaneously.

• For example, on-line banking allows many people to
connect to the bank database simultaneously, so the server
program is doing many different things concurrently.

• Web browser allows you to scroll up and down the page
while it is downloading images etc.: this is two things at
once.

• Note that if the machine these programs are running on has
only one processor, they don’t really happen in parallel,
but are interleaved. If there are several processors then
they can be really executed in parallel.

Lecture 11: threads 4

What is a thread

Choose whatever definition you prefer:

• A thread is a sequence of steps executed one at a time.

• A thread is a single sequential flow of control within a
program.

• A thread is a separately runnable subprocess.

• Other names: lightweight process, execution context.

Lecture 11: threads 5

Example

A single cash dispenser thread could do something like

• Read the bank card and pin code; if OK,

• Prompt the user with options

• If the option is to withdraw money, prompt for amount

• Dispense the required amount

• When the money is taken, update the user's balance:

current amount = current amount - amount
withdrawn

Lecture 11: threads 6

Why use multiple threads

• In the example above - obvious: cash dispensers should be
able to operate in parallel

• In some cases (e.g. user interfaces) multiple threads are not
strictly necessary, but make the program much more
transparent and the resulting application much more
usable. Each independent task (such as scrolling or
downloading) can be programmed separately and can be
executed concurrently with other tasks.

2

Lecture 11: threads 7

Issues and problems involved

• race hazard

• starvation

• deadlock

Lecture 11: threads 8

Race hazard

• A race hazard occurs when several threads are racing each
other trying to access the same shared resource, and may
modify it in an interleaved way.

• For example, two people using two different cash
machines withdrawing money from the same account.

Lecture 11: threads 9

Race hazard example

 Thread 1 Thread 2

withdraw 20 pounds

 withdraw 30 pounds

balance = 300 pounds

 balance = 300 pounds

new balance = 280 pounds

 new balance = 270 pounds

Result: 50 pounds withdrawn, only 30 subtracted.

Lecture 11: threads 10

Cure: synchronisation

• In the example, threads 1 and 2 should be synchronised to
avoid interleaving.

• Thread 1 could have locked the account when it got the
request to withdraw money.

• All other threads which need to access the same account
would have to wait until Thread 1 is finished and the lock
is released.

Lecture 11: threads 11

Synchronisation example

 Thread 1 Thread 2
withdraw 20 pounds
LOCK THE ACCOUNT
 withdraw 30 pounds
 ACCOUNT LOCKED
balance = 300 pounds
new balance = 280 pounds
RELEASE LOCK
 LOCK THE ACCOUNT
 balance = 280 pounds
 new balance = 250 pounds

Lecture 11: threads 12

Other problems

• Starvation occurs when one or more threads are blocked
from gaining access to a resource and thus cannot make
progress.

• Deadlock occurs when two or more threads are waiting on
a condition that cannot be satisfied. For example, Thread 1
is waiting for Thread 2 to give it resource A and Thread 2
is waiting for Thread 1 to release resource B.

A system is fair when each thread gets enough access to
limited resource to make reasonable progress.

3

Lecture 11: threads 13

Lessons from race hazard

The threads should be able to

• lock an object (e.g. bank account)

• wait for a resource

• notify other threads when the resource is available

Lecture 11: threads 14

Thread class in Java

Constructors:

• Thread()

• Thread(Runnable r) (takes anything with a run() method
and turns it into a thread)

Lecture 11: threads 15

Thread class in Java continued

Methods:

• start() start the thread

• run() execute the sequence of steps the thread performs

• sleep(long time) throws InterruptedException
pauses for time milliseconds

• void setPriority(int newPriority): threads
may have different priority and scheduled accordingly.

• wait(), wait(long timeout), notify(),
notifyAll() inherited from Object

• yield(): give another thread a chance to run

Lecture 11: threads 16

Creating a Thread in Java

Two ways to create a thread in Java:

• subclass the Thread class and override its run()
method (the default implementation does nothing).

• implement Runnable interface (has the run() method).

Lecture 11: threads 17

How to stop a thread

• stop() method is deprecated (because unsafe), do not
use it!

• Best of all is to arrange for the thread to return when it is
no longer needed.

Lecture 11: threads 18

Examples (from Arnold and Gosling)

• One thread prints "ping" every 33 milliseconds, another
prints "PONG" every 100 milliseconds.

• The first class, PingPongA, extends Thread.

• The second class, PingPongB, implements Runnable.

4

Lecture 11: threads 19

PingPongA

public class PingPongA extends Thread {

 private String word; // what to print

 private int delay; // how long to pause

public PingPongA(String whatToSay, int
delayTime) {

 word = whatToSay;

 delay = delayTime;

}

Lecture 11: threads 20

PingPongA continued

public void run() {

 try {

 for(;;) {

 System.out.print(word + " ");

 sleep(delay); // wait until next time

 }

 } catch (InterruptedException e) {

 return; // end this thread

 }

}

Lecture 11: threads 21

PingPongA use

public static void main(String[] args) {

 new PingPongA("ping", 33).start();

 new PingPongA("PONG", 100).start();

}

Lecture 11: threads 22

Note: start() rather than run()!

• If you want to create several threads in your program
which execute concurrently, do not call their run() method:
then all threads will run in order (first thread will run till it
returns, then the second thread, etc.…).

• Call start() method: then all threads will start and their
run() methods will get a chance to run concurrently.

Lecture 11: threads 23

PingPongA trace

ping PONG ping ping PONG ping ping ping
PONG

Lecture 11: threads 24

PingPongB

public class PingPongB implements
Runnable {

 private String word; // what to print

 private int delay; // how long to pause

public PingPongB(String whatToSay, int
delayTime) {

 word = whatToSay;

 delay = delayTime;

}

5

Lecture 11: threads 25

PingPongB continued

public void run() {

 try {

 for(;;) {

 System.out.print(word + " ");

 Thread.sleep(delay);

 }

 } catch (InterruptedException e) {

 return; // end this thread

 }

}
Lecture 11: threads 26

PingPongB use

public static void main(String[] args) {

 Runnable ping = new PingPongB("ping",
33);

 Runnable pong = new PingPongB("PONG",
100);

 new Thread(ping).start();

 new Thread(pong).start();

}

Lecture 11: threads 27

Synchronized methods

• Blocks of code and methods which access the same object
from separate threads are called critical sections. They are
identified with synchronized keyword.

• For example,

public synchronized double getBalance(){

 return balance

}

• The thread which called a synchronized method gets a lock
on the object whose method was called. Other threads
cannot call a syncronized method on the same object until
the object is unlocked.

Lecture 11: threads 28

Synchronized statements

• To lock an object without invoking a synchronized
method, synchronized statement can be used. It consists of
two parts: an object to be locked and a statement to execute
when the lock is obtained.

synchronized(balance){

 ...

}

Lecture 11: threads 29

wait()

• Wait for some condition to become true:
synchronized void doWhenCondition(){
 while (!condition) {
 wait();
 }
 ...
}

Lecture 11: threads 30

notify()

• Tell other threads if you changed something they may be
interested in:

syncronized void changeCondition() {

 ... change some value used in a
condition test

 notifyAll();

}

6

Lecture 11: threads 31

Example: counter

• A counter class which has an integer variable (counter) and
two synchronised methods, increment() and decrement().

• A counter can be incremented up to 10 and decremented
down to 0.

• Only one thread at a time has access to the counter, so
there is no race hazard.

• Two kinds of threads, Incrementers and Decrementers.
• Incrementers call increment(), Decrementers call

decrement().

Lecture 11: threads 32

Example: Counter class

class Counter {

 int counter;

 public Counter(int i) {

 counter = i;

 }

Lecture 11: threads 33

Example: Counter class

public synchronized void increment() {

 try {

 while (counter >= 10) wait();

 } catch (InterruptedException e) {

 return;

 }

 counter++;

 notifyAll();

}

Lecture 11: threads 34

Example: Counter class

 public synchronized void decrement() {

 try {

 while (counter <= 0) wait();

 } catch (InterruptedException e) {

 return;

 }

 counter--;

 notifyAll();

}

Lecture 11: threads 35

Example: Incrementer class

 class Incrementer extends Thread {

 String name;

 Counter c;

 Incrementer(String name, Counter q){

 this.c = q;

 this.name = name;

 System.out.println("Incrementer" +
name + " created");

 }

Lecture 11: threads 36

Example: Incrementer class

public void run() {

 while(true){

 c.increment();

 System.out.println(name + "

incremented the counter to "+c.counter);

 try {

 Thread.sleep(10);

 } catch (InterruptedException e){
 return;
 }
 }
}

7

Lecture 11: threads 37

Decrementer is similar

public static void main(String[] args) {

 Counter c = new Counter(0);

 new Incrementer("x", c).start();

 new Incrementer("y", c).start();

 new Decrementer("z", c).start();

 new Decrementer("w", c).start();

 }

Lecture 11: threads 38

Summary

• Threads are subprocesses running within the same
program.

• Threads can compete for resources; the programmer should
ensure fairness

• Threads can be synchronised, so that one thread gets
access to an object only when another is finished

• Threads can wait for one another and notify each other of
changes.

• New keyword: synchronized

• More details: Java Gently, Arnold and Gosling , Sun Java
Tutorial:http://java.sun.com/docs/books/tutorial/essential/threads

