Exercises on DL

- 1. Define the following concept: Attendee (of some work-life balance workshop) is a working mother employed by the University of Nottingham. Assume that you have an atomic concept Woman, roles Child and Employer, and a constant uon for the University of Nottingham.
- 2. Describe someone all of whose children only have female children themselves (that is a person who only has granddaughters, if he or she has any grandchildren).
- 3. Describe someone who has children, and all of whose children have children.
- 4. (a) Do $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3$ entail $d_1 \sqsubseteq d_3$?
 - (b) Do $c \to d_1$ and $d_2 \sqsubseteq d_1$ entail $c \to d_2$?
 - (c) Do $c \to d_1$ and $d_1 \sqsubseteq d_2$ entail $c \to d_2$?

Answer

- 1. Attendee \doteq [AND Woman [EXISTS 1 Child] [FILLS Employer uon]]
- 2. [ALL : *Child Woman*] describes someone all of whose children are female, and we want to say that someone's children are described by this concept, so we say [ALL : *Child* [ALL : *Child Woman*]].
- 3. To say than someone has children we can use **[EXISTS** 1 : *Child*] and to describe someone all of whose children have children we can use **[ALL** : *Child* **[EXISTS** 1 : *Child*]]. Since we want the concept to satisfy both properties, we say

[AND [EXISTS 1 : Child] [ALL : Child [EXISTS 1 : Child]]]

- 4. (a) Do $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3$ entail $d_1 \sqsubseteq d_3$? Yes: if $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3$ are true it means that $I(d_1) \subseteq I(d_2)$ and $I(d_2) \subseteq I(d_3)$ so $I(d_1) \subseteq I(d_3)$, and the latter means that $d_1 \sqsubseteq d_3$ is true.
 - (b) Do $c \to d_1$ and $d_2 \sqsubseteq d_1$ entail $c \to d_2$? No: Consider I such that $I(c) \in I(d_1)$ and $I(d_2)$ is empty. Then the first two sentences are true but $c \notin I(d_2)$ so $c \to d_2$ is false.
 - (c) Do $c \to d_1$ and $d_1 \sqsubseteq d_2$ entail $c \to d_2$? Yes: If the first two sentences are true, then $I(c) \in I(d_1)$ and $I(d_1) \subseteq I(d_2)$ so it has to hold that $I(c) \in I(d_2)$ which means $c \to d_2$ is true.