G53KRR exercise on Bayesian networks.

This is exercise 2 after Chapter 12 in Brachman and Levesque's book:

Consider the following example: Metastatic cancer is a possible cause of a brain tumor and is also an explanation for an increased total serum calcium. In turn, either of these could cause a patient to fall into occasional coma. Severe headache could also be explained by a brain tumor.

- (a) Represent these causal links in a belief network. Let a stand for 'metastatic cancer', b for 'increased total serum calcium', c for 'brain tumor', d for 'occasional coma', and e for 'severe headaches'.
- (b) Give an example of an independence assumption that is implicit in this network.
- (c) Suppose the following probabilities are given: $Pr(a) = 0.2, Pr(b|a) = 0.8, Pr(b|\neg a) = 0.2, Pr(c|a) = 0.2, Pr(c|\neg a) = 0.05, Pr(e|c) = 0.8, Pr(e|\neg c) = 0.6, Pr(d|b \land c) = 0.8, Pr(d|b \land \neg c) = 0.8, Pr(d|\neg b \land c) = 0.8, Pr(d|\neg b \land \neg c) = 0.05$ and assume that it is also given that some patient is suffering from severe headaches but has not fallen into a coma. Calculate joint probabilities for the eight remaining possibilities (that is, according to whether a, b, and c are true or false).
- (d) According to the numbers given, the a priori probability that the patient has metastatic cancer is 0.2. Given that the patient is suffering from severe headaches but has not fallen into a coma, are we now more or less inclined to believe that the patient has cancer? Explain.

Answers

(a) Sorry for an ascii drawing. The main thing here is that arcs go from cause (e.g. brain tumor) to effect (e.g. headache). Other layouts like the one I did on the board are OK too.

- (b) Examples are:
 - $Pr(c \mid a \land b) = Pr(c \mid a), Pr(c \mid \neg a \land b) = Pr(c \mid \neg a)$ etc.
 - $Pr(d \mid a \land b \land c) = Pr(d \mid b \land c)$
 - $Pr(e \mid a \land b \land c \land d) = Pr(e \mid c)$

- (c) I spell out the computation of the probability of the first conjunction in more detail, after that I will skip the chain rule and use the negation rule without mentioning it.
 - 1. $Pr(a \land b \land c \land \neg d \land e) = \text{(using the normal chain rule)}$ $Pr(a) \cdot Pr(b \mid a) \cdot Pr(c \mid a \land b) \cdot Pr(\neg d \mid a \land b \land c) \cdot Pr(e \mid a \land b \land c \land \neg d) = \text{(substituting conditional probabilities using independence assumptions of the network)}$ $Pr(a) \cdot Pr(b \mid a) \cdot Pr(c \mid a) \cdot Pr(\neg d \mid b \land c) \cdot Pr(e \mid c) =$

 $Pr(a) \cdot Pr(b \mid a) \cdot Pr(c \mid a) \cdot Pr(\neg a \mid b \land c) \cdot Pr(e \mid c) =$ (using the negation rule $Pr(\neg d \mid b \land c) = 1 - Pr(d \mid b \land c)$) $Pr(a \mid b) Pr(b \mid c) Pr(b$

 $Pr(a) \cdot Pr(b \mid a) \cdot Pr(c \mid a) \cdot (1 - Pr(d \mid b \land c)) \cdot Pr(e \mid c) = 0.2 \cdot 0.8 \cdot 0.2 \cdot 0.2 \cdot 0.8 = 0.00512$

- 2. $Pr(a \land b \land \neg c \land \neg d \land e) = Pr(a) \cdot Pr(b \mid a) \cdot (1 Pr(c \mid a)) \cdot (1 Pr(d \mid b \land \neg c)) \cdot Pr(e \mid \neg c) = 0.2 \cdot 0.8 \cdot 0.8 \cdot 0.2 \cdot 0.6 = 0.01536$
- 3. $Pr(a \land \neg b \land c \land \neg d \land e) = Pr(a) \cdot (1 Pr(b \mid a)) \cdot Pr(c \mid a) \cdot (1 Pr(d \mid \neg b \land c)) \cdot Pr(e \mid c) = 0.2 \cdot 0.2 \cdot 0.2 \cdot 0.2 \cdot 0.8 = 0.00128$
- 4. $Pr(a \land \neg b \land \neg c \land \neg d \land e) = Pr(a) \cdot (1 Pr(b \mid a)) \cdot (1 Pr(c \mid a)) \cdot (1 Pr(d \mid \neg b \land \neg c)) \cdot Pr(e \mid \neg c) = 0.2 \cdot 0.2 \cdot 0.8 \cdot 0.95 \cdot 0.6 = 0.01824$
- 5. $Pr(\neg a \land b \land c \land \neg d \land e) = (1 Pr(a)) \cdot Pr(b \mid \neg a) \cdot Pr(c \mid \neg a) \cdot (1 Pr(d \mid b \land c)) \cdot Pr(e \mid c) = 0.8 \cdot 0.2 \cdot 0.05 \cdot 0.2 \cdot 0.8 = 0.00128$
- 6. $Pr(\neg a \land b \land \neg c \land \neg d \land e) = (1 Pr(a)) \cdot Pr(b \mid \neg a) \cdot (1 Pr(c \mid \neg a)) \cdot (1 Pr(d \mid b \land \neg c)) \cdot Pr(e \mid \neg c) = 0.8 \cdot 0.2 \cdot 0.95 \cdot 0.2 \cdot 0.6 = 0.01824$
- 7. $Pr(\neg a \land \neg b \land c \land \neg d \land e) = (1 Pr(a)) \cdot (1 Pr(b \mid \neg a)) \cdot Pr(c \mid \neg a) \cdot (1 Pr(d \mid \neg b \land c)) \cdot Pr(e \mid c) = 0.8 \cdot 0.8 \cdot 0.05 \cdot 0.2 \cdot 0.8 = 0.00512$
- 8. $Pr(\neg a \land \neg b \land \neg c \land \neg d \land e) = (1 Pr(a)) \cdot (1 Pr(b \mid \neg a)) \cdot (1 Pr(c \mid \neg a)) \cdot (1 Pr(d \mid b \land \neg c)) \cdot Pr(e \mid \neg c) = 0.8 \cdot 0.8 \cdot 0.95 \cdot 0.95 \cdot 0.6 = 0.34656$
- (d) We are asked whether $Pr(a \mid \neg d \land e)$ is greater or smaller than Pr(a).

 $Pr(a \mid \neg d \land e) = Pr(a \land \neg d \land e)/Pr(\neg d \land e)$ (conditional probability definition). We need to compute $Pr(a \land \neg d \land e)$ and $Pr(\neg d \land e)$, and to do that we use the probabilities we computed above. They describe all 8 possible states of the world given that $\neg d$ and e are true, and they are all disjoint. We are using $Pr(X) = Pr(X \land Y) + Pr(X \land \neg Y)$, or that the probability of the union of disjoint events equals to the sum of probabilities of those events.

So $Pr(a \land \neg d \land e) = Pr(a \land b \land c \land \neg d \land e) + Pr(a \land b \land \neg c \land \neg d \land e) + Pr(a \land \neg b \land c \land \neg d \land e) + Pr(a \land \neg b \land \neg c \land \neg d \land e)$ and $Pr(\neg d \land e)$ is the sum of all 8 numbers above.

 $Pr(a \land \neg d \land e) = 0.04$

 $Pr(\neg d \land e) = 0.04 + 0.00128 + 0.01824 + 0.00512 + 0.34656 = 0.4112$

 $Pr(a \mid \neg d \land e) = 0.04/0.4112$ which is approximately 0.1. So the probability got smaller.