G53KRR: unification, resolution with equality

A unifier of two literals ρ_{1} and ρ_{2} is a substitution θ such that $\rho_{1} \theta=\rho_{2} \theta$.
There are many possible unifiers, and some of them are too specific. For example, $P(x, y)$ and $P(a, z)$ can be unified by $\theta_{1}=x / a, y / z$ and by $\theta_{2}=$ $x / a, y / b, z / b$ (the second one is too specific).

A most general unifier (mgu) for ρ_{1} and ρ_{2} is a unifier θ such that for any other unifier θ^{\prime}, there is a further substitution $\theta *$ such that $\theta^{\prime}=\theta \theta *$. Basically, θ^{\prime} is obtained from θ by doing some extra substitutions.

An mgu for ρ_{1} and ρ_{2} (assuming ρ_{1} and ρ_{2} do not have common variables to start with) can be computed as follows:

1. start with $\theta=\{ \}$
2. exit if $\rho_{1} \theta=\rho_{2} \theta$
3. set DS to be the pair of terms at the first place where $\rho_{1} \theta$ and $\rho_{2} \theta$ disagree
4. find a variable v in DS and a term t in DS not containing v; if none exist, fail
5. otherwise set θ to $\theta\{v / t\}$ and go to step 2 .

If we have to deal with a set of clauses containing equality, we need to add to $K B$ the following axioms:
reflexivity $\forall x(x=x)$
symmetry $\forall x \forall y(x=y \supset y=x)$
transitivity $\forall x \forall y \forall z(x=y \wedge y=z \supset x=z)$
substitution for functions for every function f of arity n in the set of clauses, $\forall x_{1} \forall y_{1} \ldots \forall x_{n} \forall y_{n}\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \supset f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)$
substitution for predicates for every predicate P of arity n in the set of clauses,

$$
\forall x_{1} \forall y_{1} \ldots \forall x_{n} \forall y_{n}\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \supset P\left(x_{1}, \ldots, x_{n}\right) \supset P\left(y_{1}, \ldots, y_{n}\right)\right)
$$

With these axioms, resolution is sound and complete for refutation for firstorder logic with equality.

Example: $\forall x(x=a \vee x=b), \exists x P(x), \neg P(a), \neg P(b)$ should be inconsistent. Clauses:
$\mathbf{C 1}[x=a, x=b]$
C2 $[P(c)]$
C3 $[\neg P(a)]$
$\mathbf{C 4}[\neg P(b)]$
We will also use the following instance of substitution for predicates:
C5 $\left[\neg\left(x_{1}=y_{1}\right), \neg P\left(x_{1}\right), P\left(y_{1}\right)\right]$
Proof:
(1) $\left[\neg\left(c=y_{1}\right), P\left(y_{1}\right)\right]$ from C 5 and $\mathrm{C} 2, x_{1} / c$
(2) $[\neg(c=a)]$ from C3 and (1), y_{1} / a
(3) $[c=b]$ from (2) and C1, x / c
(4) $[P(b)]$ from (3) and (1), y_{1} / b
(5) [] from (4) and C4.

