G53KRR: unification, resolution with equality

A unifier of two literals ρ_1 and ρ_2 is a substitution θ such that $\rho_1 \theta = \rho_2 \theta$.

There are many possible unifiers, and some of them are too specific. For example, P(x, y) and P(a, z) can be unified by $\theta_1 = x/a, y/z$ and by $\theta_2 = x/a, y/b, z/b$ (the second one is too specific).

A most general unifier (mgu) for ρ_1 and ρ_2 is a unifier θ such that for any other unifier θ' , there is a further substitution θ * such that $\theta' = \theta\theta$ *. Basically, θ' is obtained from θ by doing some extra substitutions.

An mgu for ρ_1 and ρ_2 (assuming ρ_1 and ρ_2 do not have common variables to start with) can be computed as follows:

- 1. start with $\theta = \{ \}$
- 2. exit if $\rho_1 \theta = \rho_2 \theta$
- 3. set DS to be the pair of terms at the first place where $\rho_1 \theta$ and $\rho_2 \theta$ disagree
- 4. find a variable v in DS and a term t in DS not containing v; if none exist, fail
- 5. otherwise set θ to $\theta\{v/t\}$ and go to step 2.

If we have to deal with a set of clauses containing equality, we need to add to KB the following axioms:

reflexivity $\forall x(x=x)$

symmetry $\forall x \forall y (x = y \supset y = x)$

transitivity $\forall x \forall y \forall z (x = y \land y = z \supset x = z)$

substitution for functions for every function f of arity n in the set of clauses, $\forall x_1 \forall y_1 \dots \forall x_n \forall y_n (x_1 = y_1 \land \dots \land x_n = y_n \supset f(x_1, \dots, x_n) = f(y_1, \dots, y_n))$

substitution for predicates for every predicate P of arity n in the set of clauses,

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n (x_1 = y_1 \land \dots \land x_n = y_n \supset P(x_1, \dots, x_n) \supset P(y_1, \dots, y_n))$$

With these axioms, resolution is sound and complete for refutation for firstorder logic with equality.

Example: $\forall x(x = a \lor x = b), \exists x P(x), \neg P(a), \neg P(b)$ should be inconsistent. Clauses:

C1 [x = a, x = b]

C2 [P(c)]

C3 $[\neg P(a)]$

C4 $[\neg P(b)]$

We will also use the following instance of substitution for predicates:

C5 $[\neg(x_1 = y_1), \neg P(x_1), P(y_1)]$

Proof:

- (1) $[\neg(c = y_1), P(y_1)]$ from C5 and C2, x_1/c
- (2) $[\neg(c=a)]$ from C3 and (1), y_1/a
- (3) [c = b] from (2) and C1, x/c
- (4) [P(b)] from (3) and (1), y_1/b
- (5) [] from (4) and C4.