
G53KRR: Forward chaining, production systems

Forward chaining (for propositional Horn clauses):

input: a finite list of atomic sentences, q1, . . . , qn

output: YES if KB entails all of qi, NO otherwise

1. if all goals qi are marked as solved, return YES

2. check if there is a clause [p,¬p1, . . . ,¬pm] in KB, such that all of
p1, . . . , pm are marked as solved and p is not marked as solved

3. if there is such a clause, then mark p as solved and go to step 1.

4. otherwise, return NO.

Another way to look at it:

input: a finite list of atomic sentences, q1, . . . , qn

output: YES if KB entails all of qi, NO otherwise

1. if all goals qi are in KB, return YES

2. check if there is a clause p1 ∧ . . . ∧ pm ⊃ p in KB, such that all of
p1, . . . , pm are in KB and p is not in KB

3. if there is such a clause, then add p to KB and go to step 1.

4. otherwise, return NO.

For first-order case, similar, but need to unify the pattern in the body of the
rule (P1(x̄) ∧ . . . ∧ Pm(x̄)) with unit clauses Pi(ā) in KB first, and then apply
the same substitution to P (x̄).

For first-order case we do the inference from

∀x1∀x2(Parent(x1, x2)∧Male(x1) ⊃ Father(x1, x2)), Parent(bob, chris), Male(bob)

to Father(bob, chris).

Production rule systems are forward-chaining reasoning systems which use
production rules. Usually production rules are more complex than just Horn
clauses (similar to how Prolog has more than just Horn clauses, also negation
as failure etc.) but we will look at just Horn clauses. So this is different from
the version in the textbook (much simpler).

We just assume that the knowledge base consists of: Working Memory WM
which is a finite set of ground atoms (facts, or Working Memory Elements), and
a finite set of production rules (universal Horn clauses).

The simplest way of reasoning would be to chain forward as above, but this
may flood WM with a lot of irrelevant facts. Instead most production rule
systems compute a conflict set : the set of all possible rule instances applicable
for the current state of working memory. A rule instance is a substitution which

1



makes a pattern in some rule match the working memory elements, together
with the rule itself. A conflict resolution strategy is used to determine which
of the rule instances in the conflict set will actually be fired (which conclusions
added). Most conflict resolution strategies pick a single rule instance based
on one or more of the following criteria: specificity of the rules (which rule
has a more specific pattern in the body); or the order in which rules appear
in the program; or the order in which facts were added to working memory
(for example, depth first where rule instances involving more recent facts are
preferred) etc.

Exercise For the following production system, trace the results, assuming that
the conflict resolution strategy is: an instance of most important applicable rule
is selected. If there are more than one such instances, the instance is selected
randomly. The order of rule importance is: R3 more important than R1, R1 is
more important than R2.

F1 animal(tiger)

F2 animal(cat)

F3 large(tiger)

F4 eatsMeat(tiger)

F5 eatsMeat(cat)

R1 ∀x(animal(x) ∧ large(x) ∧ eatsMeat(x) ⊃ dangerous(x))

R2 ∀x(animal(x) ⊃ breathesOxygen(x))

R3 ∀x(dangerous(x) ⊃ runAwayNow)

2


