G53KRR

Revision 2

Plan of the lecture

- circumscription
- defaults
- any other questions

Circumscription

- The main idea: formalise common sense rules which admit exceptions.
- Rules like 'Birds fly' formalised as

$$\forall x (Bird(x) \land \neg Ab(x) \supset Flies(x))$$

- To check whether something is entailed by a knowledge base which contains such rules, we only check if it is entailed under the assumption that the set of exceptions *I*(*Ab*) is as small as possible
- This is called circumscription or minimal entailment

Example

$$KB = \{Bird(tweety), \forall x(Bird(x) \land \neg Ab(x) \supset Flies(x))\}$$

- Classically, KB \notin Flies(tweety) because there are interpretations of KB where Tweety is an exceptional bird (it is in I(Ab)) and it does not fly
- But such interpretations do not minimise the set of exceptions: nothing which is said in *KB* forces us to think that Tweety is exceptional, so it does not have to be in *I*(*Ab*)
- If we only consider interpretation which satisfy KB and where the set of exceptions is as small as possible, Tweety is not in this set, so Bird(tweety) ∧ ¬Ab(tweety) holds and hence Flies(tweety) holds
- KB entails Flies(tweety) on 'minimal' interpretations where I(Ab) is circumscribed (made as small as possible)

Definition of minimal entailment

- Let $M_1 = (D, I_1)$ and $M_2 = (D, I_2)$ be two interpretations over the same domain such that every constant and function are interpreted the same way.
- $\blacksquare M_1 \leq M_2 \Leftrightarrow I_1(Ab) \subseteq I_2(Ab)$
- $M_1 < M_2$ if $M_1 \le M_2$ but not $M_2 \le M_1$. (There are strictly fewer abnormal things in M_1).
- *Minimal entailment:* $KB \models_{\leq} \alpha$ iff for all interpretations M which make KB true, either $M \models \alpha$ or M is not minimal (exists M' such that M' < M and $M' \models KB$).

Back to the example

- $KB = \{Bird(tweety), \forall x(Bird(x) \land \neg Ab(x) \supset Flies(x))\}$
- $KB \models_{\leq} Flies(tweety)$ because for every interpretation M which makes KB true and Flies(tweety) false, it has to be that $I(tweety) \in I(Ab)$.
- So for for every such interpretation there is an interpretation M' which is just like M, but $l'(tweety) \notin l'(Ab)$ and $l'(tweety) \in l'(Flies)$, and M' still makes KB true and M' < M.

Defaults

- A default rule consists of a prerequisite α , justification β , conclusion γ and says 'if α holds and it is consistent to believe β , then believe γ ': $\frac{\alpha : \beta}{\gamma}$
- For example:

$$\frac{Bird(x):Flies(x)}{Flies(x)}$$

■ Default rules where justification and conclusion are the same are called *normal default rules* and are writted $Bird(x) \Rightarrow Flies(x)$.

7/14

G53KRR

Default theories and extensions

- A default theory *KB* consists of a normal first-order knowledge base *F* and a set of default rules *D*
- A set of reasonable beliefs given a default theory $KB = \{F, D\}$ is called an *extension* of KB
- E is an *extension* of (F, D) iff for every sentence π ,

$$\pi \in \mathcal{E} \iff \mathcal{F} \cup \{ \gamma \mid \frac{\alpha : \beta}{\gamma} \in \mathcal{D}, \alpha \in \mathcal{E}, \neg \beta \notin \mathcal{E} \} \models \pi$$

How one could construct an extension

$$\pi \in \textit{\textbf{E}} \iff \textit{\textbf{F}} \cup \{\gamma \mid \frac{\alpha : \beta}{\gamma} \in \textit{\textbf{D}}, \alpha \in \textit{\textbf{E}}, \neg \beta \not \in \textit{\textbf{E}}\} \models \pi$$

- 1 E := F;
- 2 close *E* under classical entailment: $E := \{\pi : E \models \pi\}$
- 3 choose some (substitution instance of) $\frac{\alpha:\beta}{\gamma}\in D$
- 4 if $\alpha \in E$, and $\neg \beta \notin E$ (meaning, β is consistent with E), $E := E \cup \{\gamma\}$
- 5 go back to 2

G53KRR

Example

$$F = \{Bird(tweety)\}, D = \{\frac{Bird(x) : Flies(x)}{Flies(x)}\}\$$

- *E* := {*Bird*(*tweety*)}
- close *E* under classical entailment: $E := \{\pi : Bird(tweety) \models \pi\}$
- $\frac{\textit{Bird(tweety):Flies(tweety)}}{\textit{Flies(tweety)}} \in D$
- $Bird(tweety) \in E$, and $\neg Flies(tweety) \notin E$ $E := E \cup \{Flies(tweety)\}$
- $E := \{\pi : Bird(tweety), Flies(tweety) \models \pi\}$
- there are no more rules to apply

G53KRR

Example from 2008 exam, Q6e

$$F = \{ Dutchman(peter), Dutchman(hans), Dutchman(johan), \\ peter \neq hans, hans \neq johan, peter \neq johan, \\ \neg Tall(peter) \lor \neg Tall(hans) \} \\ D = \{ \frac{Dutchman(x) : Tall(x)}{Tall(x)} \}$$

Three instances of the default rule:

11 / 14

Exam 2008 example continued

- Suppose we start constructing E_1 with the first rule, for Peter. Since $\neg Tall(peter) \notin E_1$, we can add Tall(peter) to E_1 .
- After we close E_1 under consequence, from Tall(peter) and $\neg Tall(peter) \lor \neg Tall(hans)$ we get $\neg Tall(hans) \in E_1$.
- So now the second rule for Hans is not applicable.
- The third rule is applicable, since $\neg Tall(johan) \notin E_1$, we can add Tall(johan) to E_1
- Another possible extension is E_2 : we use the second rule first, and add Tall(hans) to E_2 .
- Now the first rule is not applicable, because E_2 contains $\neg Tall(peter)$
- The third rule is applicable, since $\neg Tall(johan) \notin E_2$, we can add Tall(johan) to E_2

G53KRR G53KRR 12 / 14

Another example with two extensions

- Facts: $F = \{Republican(dick), Quaker(dick)\}$
- Default rules: $Republican(x) \Rightarrow \neg Pacifist(x)$, $Quaker(x) \Rightarrow Pacifist(x)$.
- Extension E_1 (pick the rule $Republican(x) \Rightarrow \neg Pacifist(x)$ first) is all consequences of $\{Republican(dick), Quaker(dick), \neg Pacifist(dick)\}$. Because we start with $E_1 = \{Republican(dick), Quaker(dick)\}$, $\neg \neg Pacifist(dick) \not\in E_1$, so we can add $\neg Pacifist(dick)$ to E_1 .
- Extension E_2 (pick the rule $Quaker(x) \Rightarrow Pacifist(x)$ first) is all consequences of $\{Republican(dick), Quaker(dick), Pacifist(dick)\}$. Because we start with $E_2 = \{Republican(dick), Quaker(dick)\}$, $\neg Pacifist(dick) \notin E_2$, so we can add Pacifist(dick) to E_2 .

G53KRR G53KRR 13 / 14

Example with one extension

- Facts: $F = \{Republican(dick), Quaker(dick), \forall x (Republican(x)) \supset MemberOfPoliticalParty(x))\}$
- Default rules: $Republican(x) \Rightarrow \neg Pacifist(x)$,

$$\frac{\textit{Quaker}(x): \textit{Pacifist}(x) \land \neg \textit{MemberOfPoliticalParty}(x)}{\textit{Pacifist}(x)}$$

- Closure of F under consequence includes: {Republican(dick), Quaker(dick), ∀x(Republican(x) ⊃ MemberOfPoliticalParty(x)), MemberOfPoliticalParty(dick)}
- The second default rule is not applicable, because $\neg\neg MemberOfPoliticalParty(dick) \in E$
- only the first rule is applicable, since $\neg\neg Pacifist(dick) \notin E$, so $\neg Pacifist(dick)$ is added.

14 / 14