G53KRR exercise on Bayesian networks.

This is exercise 2 after Chapter 12 in Brachman and Levesque's book:
Consider the following example: Metastatic cancer is a possible cause of a brain tumor and is also an explanation for an increased total serum calcium. In turn, either of these could cause a patient to fall into occasional coma. Severe headache could also be explained by a brain tumor.
(a) Represent these causal links in a belief network. Let a stand for 'metastatic cancer', b for 'increased total serum calcium', c for 'brain tumor', d for 'occasional coma', and e for 'severe headaches'.
(b) Give an example of an independence assumption that is implicit in this network.
(c) Suppose the following probabilities are given: $\operatorname{Pr}(a)=0.2 \operatorname{Pr}(b \mid a)=0.8, \operatorname{Pr}(b \mid \neg a)=$ $0.2, \operatorname{Pr}(c \mid a)=0.2, \operatorname{Pr}(c \mid \neg a)=0.05, \operatorname{Pr}(e \mid c)=0.8, \operatorname{Pr}(e \mid \neg c)=0.6, \operatorname{Pr}(d \mid b \wedge c)=0.8, \operatorname{Pr}(d \mid b \wedge$ $\neg c)=0.8 \operatorname{Pr}(d \mid \neg b \wedge c)=0.8, \operatorname{Pr}(d \mid \neg b \wedge \neg c)=0.05$ and assume that it is also given that some patient is suffering from severe headaches but has not fallen into a coma. Calculate joint probabilities for the eight remaining possibilities (that is, according to whether a, b, and c are true or false).
(d) According to the numbers given, the a priori probability that the patient has metastatic cancer is 0.2 . Given that the patient is suffering from severe headaches but has not fallen into a coma, are we now more or less inclined to believe that the patient has cancer? Explain.

Answers :

(a) Sorry for an ascii drawing. The main thing here is that arcs go from cause (e.g. brain tumor) to effect (e.g. headache). Other layouts like the one I did on the board are OK too.

(b) Examples are:

- $\operatorname{Pr}(c \mid a \wedge b)=\operatorname{Pr}(c \mid a), \operatorname{Pr}(c \mid \neg a \wedge b)=\operatorname{Pr}(c \mid \neg a)$ etc.
- $\operatorname{Pr}(d \mid a \wedge b \wedge c)=\operatorname{Pr}(d \mid b \wedge c)$
- $\operatorname{Pr}(e \mid a \wedge b \wedge c \wedge d)=\operatorname{Pr}(e \mid c)$
(c) I spell out the computation of the probability of the first conjunction in more detail, after that I will skip the chain rule and use the negation rule without mentioning it.

1. $\operatorname{Pr}(a \wedge b \wedge c \wedge \neg d \wedge e)=$ (using the normal chain rule)
$\operatorname{Pr}(a) \cdot \operatorname{Pr}(b \mid a) \cdot \operatorname{Pr}(c \mid a \wedge b) \cdot \operatorname{Pr}(\neg d \mid a \wedge b \wedge c) \cdot \operatorname{Pr}(e \mid a \wedge b \wedge c \wedge \neg d)=$ (substituting conditional probabilities using independence assumptions of the network)
$\operatorname{Pr}(a) \cdot \operatorname{Pr}(b \mid a) \cdot \operatorname{Pr}(c \mid a) \cdot \operatorname{Pr}(\neg d \mid b \wedge c) \cdot \operatorname{Pr}(e \mid c)=$
(using the negation rule $\operatorname{Pr}(\neg d \mid b \wedge c)=1-\operatorname{Pr}(d \mid b \wedge c)$)
$\operatorname{Pr}(a) \cdot \operatorname{Pr}(b \mid a) \cdot \operatorname{Pr}(c \mid a) \cdot(1-\operatorname{Pr}(d \mid b \wedge c)) \cdot \operatorname{Pr}(e \mid c)=$
$0.2 \cdot 0.8 \cdot 0.2 \cdot 0.2 \cdot 0.8=0.00512$
2. $\operatorname{Pr}(a \wedge b \wedge \neg c \wedge \neg d \wedge e)=$ $\operatorname{Pr}(a) \cdot \operatorname{Pr}(b \mid a) \cdot(1-\operatorname{Pr}(c \mid a)) \cdot(1-\operatorname{Pr}(d \mid b \wedge \neg c)) \cdot \operatorname{Pr}(e \mid \neg c)=$ $0.2 \cdot 0.8 \cdot 0.8 \cdot 0.2 \cdot 0.6=0.01536$
3. $\operatorname{Pr}(a \wedge \neg b \wedge c \wedge \neg d \wedge e)=$ $\operatorname{Pr}(a) \cdot(1-\operatorname{Pr}(b \mid a)) \cdot \operatorname{Pr}(c \mid a) \cdot(1-\operatorname{Pr}(d \mid \neg b \wedge c)) \cdot \operatorname{Pr}(e \mid c)=$ $0.2 \cdot 0.2 \cdot 0.2 \cdot 0.2 \cdot 0.8=0.00128$
4. $\operatorname{Pr}(a \wedge \neg b \wedge \neg c \wedge \neg d \wedge e)=$
$\operatorname{Pr}(a) \cdot(1-\operatorname{Pr}(b \mid a)) \cdot(1-\operatorname{Pr}(c \mid a)) \cdot(1-\operatorname{Pr}(d \mid \neg b \wedge \neg c)) \cdot \operatorname{Pr}(e \mid \neg c)=$ $0.2 \cdot 0.2 \cdot 0.8 \cdot 0.95 \cdot 0.6=0.01824$
5. $\operatorname{Pr}(\neg a \wedge b \wedge c \wedge \neg d \wedge e)=$
$(1-\operatorname{Pr}(a)) \cdot \operatorname{Pr}(b \mid \neg a) \cdot \operatorname{Pr}(c \mid \neg a) \cdot(1-\operatorname{Pr}(d \mid b \wedge c)) \cdot \operatorname{Pr}(e \mid c)=$ $0.8 \cdot 0.2 \cdot 0.05 \cdot 0.2 \cdot 0.8=0.00128$
6. $\operatorname{Pr}(\neg a \wedge b \wedge \neg c \wedge \neg d \wedge e)=$
$(1-\operatorname{Pr}(a)) \cdot \operatorname{Pr}(b \mid \neg a) \cdot(1-\operatorname{Pr}(c \mid \neg a)) \cdot(1-\operatorname{Pr}(d \mid b \wedge \neg c)) \cdot \operatorname{Pr}(e \mid \neg c)=$ $0.8 \cdot 0.2 \cdot 0.95 \cdot 0.2 \cdot 0.6=0.01824$
7. $\operatorname{Pr}(\neg a \wedge \neg b \wedge c \wedge \neg d \wedge e)=$
$(1-\operatorname{Pr}(a)) \cdot(1-\operatorname{Pr}(b \mid \neg a)) \cdot \operatorname{Pr}(c \mid \neg a) \cdot(1-\operatorname{Pr}(d \mid \neg b \wedge c)) \cdot \operatorname{Pr}(e \mid c)=$ $0.8 \cdot 0.8 \cdot 0.05 \cdot 0.2 \cdot 0.8=0.00512$
8. $\operatorname{Pr}(\neg a \wedge \neg b \wedge \neg c \wedge \neg d \wedge e)=$
$(1-\operatorname{Pr}(a)) \cdot(1-\operatorname{Pr}(b \mid \neg a)) \cdot(1-\operatorname{Pr}(c \mid \neg a)) \cdot(1-\operatorname{Pr}(d \mid b \wedge \neg c)) \cdot \operatorname{Pr}(e \mid \neg c)=$ $0.8 \cdot 0.8 \cdot 0.95 \cdot 0.95 \cdot 0.6=0.34656$
(d) We are asked whether $\operatorname{Pr}(a \mid \neg d \wedge e)$ is greater or smaller than $\operatorname{Pr}(a)$.
$\operatorname{Pr}(a \mid \neg d \wedge e)=\operatorname{Pr}(a \wedge \neg d \wedge e) / \operatorname{Pr}(\neg d \wedge e)$ (conditional probability definition). We need to compute $\operatorname{Pr}(a \wedge \neg d \wedge e)$ and $\operatorname{Pr}(\neg d \wedge e)$, and to do that we use the probabilities we computed above. They describe all 8 possible states of the world given that $\neg d$ and e are true, and they are all disjoint. We are using $\operatorname{Pr}(X)=\operatorname{Pr}(X \wedge Y)+\operatorname{Pr}(X \wedge \neg Y)$, or that the probability of the union of disjoint events equals to the sum of probabilities of those events.

So $\operatorname{Pr}(a \wedge \neg d \wedge e)=\operatorname{Pr}(a \wedge b \wedge c \wedge \neg d \wedge e)+\operatorname{Pr}(a \wedge b \wedge \neg c \wedge \neg d \wedge e)+\operatorname{Pr}(a \wedge \neg b \wedge c \wedge \neg d \wedge$ $e)+\operatorname{Pr}(a \wedge \neg b \wedge \neg c \wedge \neg d \wedge e)$ and $\operatorname{Pr}(\neg d \wedge e)$ is the sum of all 8 numbers above.
$\operatorname{Pr}(a \wedge \neg d \wedge e)=0.04$
$\operatorname{Pr}(\neg d \wedge e)=0.04+0.00128+0.01824+0.00512+0.34656=0.4112$
$\operatorname{Pr}(a \mid \neg d \wedge e)=0.04 / 0.4112$ which is approximately 0.1 . So the probability got smaller.

