
G53KRR handout on Bayesian networks.

Bayesian approach (subjective probability) The basic idea is that we assign degrees of
belief (subjective probabilities) to statements like ”Tweety can fly” or ”Patient a has disease
b”. Both sentences are either true or false in the real world, so standard objective statistical
probabilities don’t apply. However we can base our degree of belief on statistical information:
namely, if 95% of birds can fly we may believe with degree 95% that a particular bird Tweety can
fly. This will be an a priori degree of belief, before we know anything else about Tweety. Once
we discover other facts about Tweety, our belief will be based on the conditional probability that
Tweety flies given other facts (that it is a penguin for example).

Probability axioms and useful rules. Given a universal set U of all possible event occurrences
(here we assume it is finite), an event a is a subset of U . For example, if U is a large set of medical
histories, a is a subset of them where the patient has been diagnosed with flu. A probability
function Pr is a function from events to numbers in [0, 1] satisfying the folowing postulates:

1. Pr(U) = 1

2. If a1, . . . , an are disjoint events, Pr(a1 ∪ . . . ∪ an) = Pr(a1) + . . .+ Pr(an).

Some consequences:

• Pr(ā) = 1− Pr(a) (ā is the complement of a)

• Pr(∅) = 0

• Pr(a ∪ b) = Pr(a) + Pr(b)− Pr(a ∩ b)

Conditional probability:

Pr(a | b) =
Pr(a ∧ b)
Pr(b)

Conditionaly independent events: Pr(a | b) = Pr(a).
a and b are conditionally independent given c: Pr(a | b ∩ c) = Pr(a | c).
Conditional version of the negation rule Pr(ā | b) = 1− Pr(a | b).

Bayes’ rule

Pr(a | b) =
Pr(a) · Pr(b | a)

Pr(b)

If a is a disease and b a symptom, and we want to know the probability that someone has the
disease given they have the symptom; it is easier to find the a priori probability of the disease and
what is the probability that a patient who has the disease will display the symptom, and the a
priori probability of the symptom.

Probabilities of sentences (basic Bayesian approach) Suppose there are n propositional
variables of interest: p1, . . . , pn (corresponding to sentences like ”Tweety flies” or ”John has flu”).
There are 2n possible states of the world (truth assignments to those variables). J is a joint
probability distribution if for every assignment I, J(I) is a number between 0 and 1 and Σ J(I) = 1
(the probability that one of the assignments corresponds to reality is 1). The probability of a
sentence α is the sum of probabilities of the worlds where α is true:

Pr(α) = ΣI|=αJ(I)

We can now find the probability of any sentence. Unfortunately, this requires us to keep 2n

numbers (probability of each assignment).
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Let us represent an assignment to {p1, . . . , pn} as 〈P1, . . . , Pn〉 where Pi is pi if pi is assigned
true and ¬pi otherwise. For example, an assignment which assigns true to p1 and false to p2 can
be represented as 〈p1,¬p2〉.

J(〈P1, . . . , Pn〉) = Pr(P1 ∧ . . . ∧ Pn)

By the chain rule (which follows from the definition of conditional probability),

Pr(P1 ∧ . . . ∧ Pn) = Pr(P1) · Pr(P2|P1) · · · Pr(Pn|P1 ∧ . . . ∧ Pn−1)

If all the variables were conditionally independent of each other:

Pr(Pi|P1 ∧ . . . ∧ Pi−1) = Pr(Pi)

then we could compute probabilities of each interpretation from n numbers. But normally we
cannot assume that all variables are conditionally independent.

Belief networks The idea is to represent explicitly which variables are conditionally dependent
on each other. The nodes in the network are variables pi and there is an arc from pi to pj if pj is
conditionally dependent on pi (its probability given pi is different from its prior probability).

If there is an arc from pi to pj we call pi a parent of pj in the network.
Each propositional variable in the belief network is conditionally independent from non-parent

variables given its parent variables:

Pr(Pi | P1 ∧ . . . ∧ Pi−1) = Pr(Pi | parents(Pi))

where parents(Pi) is the conjunction of literals which correspond to parents of pi in the network.

Exercise Do exercise 2 after Chapter 12:
Consider the following example: Metastatic cancer is a possible cause of a brain tumor and is

also an explanation for an increased total serum calcium. In turn, either of these could cause a
patient to fall into occasional coma. Severe headache could also be explained by a brain tumor.

(a) Represent these causal links in a belief network. Let a stand for ‘metastatic cancer’, b for
‘increased total serum calcium’, c for ‘brain tumor’, d for ‘occasional coma’, and e for ‘severe
headaches’.

(b) Give an example of an independence assumption that is implicit in this network.

(c) Suppose the following probabilities are given: Pr(a) = 0.2, P r(b|a) = 0.8, P r(b|¬a) =
0.2, P r(c|a) = 0.2, P r(c|¬a) = 0.05, Pr(e|c) = 0.8, P r(e|¬c) = 0.6, Pr(d|b∧c) = 0.8, P r(d|b∧
¬c) = 0.8, P r(d|¬b ∧ c) = 0.8, P r(d|¬b ∧ ¬c) = 0.05 and assume that it is also given that
some patient is suffering from severe headaches but has not fallen into a coma. Calculate
joint probabilities for the eight remaining possibilities (that is, according to whether a, b,
and c are true or false).

(d) According to the numbers given, the a priori probability that the patient has metastatic
cancer is 0.2. Given that the patient is suffering from severe headaches but has not fallen
into a coma, are we now more or less inclined to believe that the patient has cancer? Explain.
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