G53KRR 2016-17
Exercise on syntax and semantics of FOL Set in lecture 4, 13 October 2016.

In the exercises below, P is a unary predicate symbol, R is a binary predicate symbol, and f is a unary function symbol.

1. Consider an interpretation $J=(D, I)$ where $D=\{1,2,3\}, I(P)=\{1,2\}$ and $I(R)=\{\langle 2,2\rangle,\langle 2,3\rangle\}$. Which of the following formulas are true in J under the variable assignment μ which assigns 1 to x and 2 to y :
(a) $P(x)$
(b) $R(x, y)$
(c) $\exists x R(x, x)$
(d) $\exists x \exists y(\neg(x=y) \wedge R(x, y))$
(e) $\exists x \forall y \neg R(x, y)$
2. Construct some interpretation where $\forall x \forall y(R(x, y) \supset R(y, x))$ is true.
3. Construct some interpretation where $\forall x \forall y(R(x, y) \supset R(y, x))$ is false
4. Let $J_{1}=\left(D_{1}, I_{1}\right)$, where $D_{1}=\{a, b\}, I_{1}(f)$ is the identity function $\left(I_{1}(f)(a)=a\right.$ and $\left.I_{1}(f)(b)=b\right)$, and $I_{1}(R)=\{\langle a, a\rangle,\langle b, a\rangle\}$. An assignment μ_{1} is such that $\mu_{1}(x)=a$.
Does it hold that $J_{1}, \mu_{1} \models \exists x R(x, f(x))$?
5. Come up with an interpretation which makes $\forall x \exists y R(x, f(y))$ true.
6. Come up with an interpretation which makes $\forall x \exists y R(x, f(y))$ false.
7. (difficult - only do this if you actually like it). Find an interpretation where the three sentences below are true together. Is there a finite interpretation (one with a finite domain D) where they are all true?
(a) $\forall x \neg R(x, x)$
(b) $\forall x \exists y R(x, y)$
(c) $\forall x \forall y \forall z(R(x, y) \wedge R(y, z) \supset R(x, z))$
