G53KRR 2016-17 Exercise on syntax and semantics of FOL Set in lecture 4, 13 October 2016.

In the exercises below, P is a unary predicate symbol, R is a binary predicate symbol, and f is a unary function symbol.

- 1. Consider an interpretation J = (D, I) where $D = \{1, 2, 3\}$, $I(P) = \{1, 2\}$ and $I(R) = \{\langle 2, 2 \rangle, \langle 2, 3 \rangle\}$. Which of the following formulas are true in Junder the variable assignment μ which assigns 1 to x and 2 to y:
 - (a) P(x)
 - (b) R(x, y)
 - (c) $\exists x R(x, x)$
 - (d) $\exists x \exists y (\neg (x = y) \land R(x, y))$
 - (e) $\exists x \forall y \neg R(x,y)$
- 2. Construct some interpretation where $\forall x \forall y (R(x,y) \supset R(y,x))$ is true.
- 3. Construct some interpretation where $\forall x \forall y (R(x,y) \supset R(y,x))$ is false.
- 4. Let $J_1 = (D_1, I_1)$, where $D_1 = \{a, b\}$, $I_1(f)$ is the identity function $(I_1(f)(a) = a \text{ and } I_1(f)(b) = b)$, and $I_1(R) = \{\langle a, a \rangle, \langle b, a \rangle\}$. An assignment μ_1 is such that $\mu_1(x) = a$.

Does it hold that $J_1, \mu_1 \models \exists x R(x, f(x))$?

- 5. Come up with an interpretation which makes $\forall x \exists y R(x, f(y))$ true.
- 6. Come up with an interpretation which makes $\forall x \exists y R(x, f(y))$ false.
- 7. (difficult only do this if you actually like it). Find an interpretation where the three sentences below are true together. Is there a finite interpretation (one with a finite domain D) where they are all true?
 - (a) $\forall x \neg R(x, x)$
 - (b) $\forall x \exists y R(x, y)$
 - (c) $\forall x \forall y \forall z (R(x,y) \land R(y,z) \supset R(x,z))$