
G53KRR

Revision

G53KRR G53KRR 1 / 29

Plan of the lecture

exam format
common mistakes
resolution example
Bayesian networks
description logic
circumscription
defaults
any other questions

G53KRR G53KRR 2 / 29

Exam format

4 questions out of 4
previous papers and answers on the web

G53KRR G53KRR 3 / 29

Common mistakes 1

First order logic question: show that S1, S2 do not logically entail S3
Correct answer: describe an interpretation which makes S1 and
S2 true and S3 false
Don’t:

use truth tables for first order sentences
attempt a resolution derivation of [] from S1, S2 and ¬S3, and then
stop and say ‘see, it does not work, so S3 is not entailed’

G53KRR G53KRR 4 / 29

Common mistakes 2

Resolution
don’t apply resolution to two literals at the same time:

MISTAKE :
[A,B], [¬A,¬B]

[]

it is not sound! A ∨ B and ¬A ∨ ¬B should not derive false.
only substitute for variables (not constants or functional terms)
Don’t do a/f (x) or f (x)/a

MISTAKE :
[(P(f (x))], [¬P(a)]

[]

(you can do x/a, with f (x) becoming f (a)).

G53KRR G53KRR 5 / 29

Resolution example

KB = {∀xPlus(0, x , x), ∀x∀y∀z(Plus(x , y , z) ⊃ Plus(s(x), y , s(z))}

(Meaning: Plus(x , y , z) is x + y = z,
0 + x = x ,
x + y = z ⊃ ((x + 1) + y = (z + 1)))

Show that KB |= ∃u Plus(s(s(0)), s(s(s(0))),u).
(Meaning: that ∃u (2 + 3 = u))

G53KRR G53KRR 6 / 29

Resolution example continued

1. [Plus(0, x1, x1)] (KB) (I renamed x to x1)

2. [¬Plus(x , y , z),Plus(s(x), y , s(z))] (KB)

3. [¬Plus(s(s(0)), s(s(s(0))),u)] (negation of ∃uPlus(2,3,u))

4. [Plus(s(0), x1, s(x1))] from 1,2, x/0, y/x1, z/x1

5. [Plus(s(s(0)), x1, s(s(x1)))] from 4, 2, x/s(0), y/x1, z/s(x1)

6. [] from 3,5, x1/s(s(s(0))),u/s(s(s(s(s(0)))))

G53KRR G53KRR 7 / 29

Horn clauses

A Horn clause is a clause with at most one positive literal.
A unit clause is a clause with one literal.
A positive Horn clause contains one positive literal.
A negative Horn clause has no positive literals.
Examples:

[¬P(x),¬Q(x),R(x)] (some negative and one positive literal;
corresponds to a rule ∀x(P(x) ∧Q(x) ⊃ R(x))
[R(x)] (only one positive literal; corresponds to a fact)
[¬P(x),¬Q(x)] (only negative literals; corresponds to a query)

G53KRR G53KRR 8 / 29

SLD resolution

An SLD derivation of clause c from a set of clauses S is a sequence of
steps c1, . . . , cn = c such that:

c1 ∈ S
ci+1 is a resolvent of ci and a clause in S.

Basic idea: in a proof, we use the clause we just derived plus some
clause in S. We can also arrange things so that all the clauses in the
derivation are negative.

SLD resolution is refutation-complete for Horn clauses (if [] is
derivable at all, it is derivable by SLD resolution).

G53KRR G53KRR 9 / 29

SLD resolution example

KB = {[p], [q], [¬p,¬q, r]}
Check if r follows, so we add [¬r] and try to derive [] by SLD
resolution.
S = {[p], [q], [¬p,¬q, r], [¬r]}

SLD derivation of [] from S:
c1 = [¬r] (in S)
c2 = [¬p,¬q] (resolvent of c1 and [¬p,¬q, r])
c3 = [¬q] (resolvent of c2 and [p])
c4 = [] (resolvent of c3 and [q]).

G53KRR G53KRR 10 / 29

Backward chaining

input: a finite set of atomic sentences q1, . . . ,qn
output: YES if KB entails all of qi , NO otherwise
procedure: SOLVE[q1, ..., qn]
if n = 0 then return YES
for each clause c in KB do
. if c = [not p1,...,not pm, q1] and SOLVE [p1,...,pm,q2,...,qn]
. then return YES
end for
return NO

G53KRR G53KRR 11 / 29

Example

Backward chaining corresponds to SLD resolution.
Given KB = {[p], [q], [¬p,¬q, r]} and a query r :

SOLVE[r] [¬r]
SOLVE[p,q] [¬p,¬q]
SOLVE[q] [¬q]
SOLVE[] []
YES

G53KRR G53KRR 12 / 29

Forward chaining

input: an atomic sentence q
output: YES if KB entails q, NO otherwise
1. if q is marked as solved, return YES
2. if there is [¬p1, . . . ,¬pn,q1] in KB such that p1, . . . ,pn are marked as
solved and q1 is not marked solved: mark q1 as solved and go to 1;
else return NO.

G53KRR G53KRR 13 / 29

Example

Given KB = {[p], [q], [¬p,¬q, r]} and a query r :

[p] is in KB and p is not marked solved; mark p as solved
another way of looking at it: add p to working memory
[q] is in KB and q is not marked solved; mark q as solved
another way of looking at it: add q to working memory
[¬p,¬q, r] is in KB, p, q are marked as solved, and r is not; mark r as
solved
another way of looking at it: if p, q are in working memory, and there is
a rule p ∧ q ⊃ r , then add r to working memory
YES

G53KRR G53KRR 14 / 29

Bayesian networks

Directed acyclic graph
Nodes: propositional variables; a directed edge from pi to pj if the
truth of pi affects the truth of pj . pi parent of pj .

J(〈P1, . . . ,Pn〉) = Pr(P1 ∧ . . . ∧ Pn)

Chain rule

Pr(P1 ∧ . . . ∧ Pn) = Pr(P1) · Pr(P2|P1) · · · Pr(Pn|P1 ∧ . . . ∧ Pn−1)

Independence assumption Each propositional variable in the
belief network is conditionally independent from non-parent
variables given its parent variables:

Pr(Pi | P1 ∧ . . . ∧ Pi−1) = Pr(Pi | parents(Pi))

where parents(Pi) is the conjunction of literals which correspond
to parents of pi in the network.

G53KRR G53KRR 15 / 29

Mistake 3

Mistake: suppose a network consists of two variables, p1 and p2,
such that there is an edge from p1 to p2. The mistake is to say that
Pr(p1 | p2) = Pr(p1) because p2 is not a parent of p1 (so apply the
independence assumption ‘in reverse order of indices’)
This is a much more subtle (and understandable given the way the
independenc assumption is stated) mistake.
The independence assumption statement assumes that in the
state description, the variables are listed in topological sort order
(if there is an edge from pi to pj , then pi appears before pj in the
order). This is always possible since the graph is acyclic. So we
never check probability of parent conditioned on a child or a set of
descendants.

G53KRR G53KRR 16 / 29

Circumscription

The main idea: formalise common sense rules which admit
exceptions.
Rules like ‘Birds fly’ formalised as

∀x(Bird(x) ∧ ¬Ab(x) ⊃ Flies(x))

To check whether something is entailed by a knowledge base
which contains such rules, we only check if it is entailed under the
assumption that the set of exceptions I(Ab) is as small as possible
This is called circumscription or minimal entailment

G53KRR G53KRR 17 / 29

Example

KB = {Bird(tweety),∀x(Bird(x) ∧ ¬Ab(x) ⊃ Flies(x))}

Classically, KB 6|= Flies(tweety) because there are interpretations
of KB where Tweety is an exceptional bird (it is in I(Ab)) and it
does not fly
But such interpretations do not minimise the set of exceptions:
nothing which is said in KB forces us to think that Tweety is
exceptional, so it does not have to be in I(Ab)
If we only consider interpretation which satisfy KB and where the
set of exceptions is as small as possible, Tweety is not in this set,
so Bird(tweety) ∧ ¬Ab(tweety) holds and hence Flies(tweety)
holds
KB entails Flies(tweety) on ‘minimal’ interpretations where I(Ab)
is circumscribed (made as small as possible)

G53KRR G53KRR 18 / 29

Definition of minimal entailment

Let M1 = (D, I1) and M2 = (D, I2) be two interpretations over the
same domain such that every constant and function are
interpreted the same way.
M1 ≤ M2 ⇔ I1(Ab) ⊆ I2(Ab)
M1 < M2 if M1 ≤ M2 but not M2 ≤ M1. (There are strictly fewer
abnormal things in M1).
Minimal entailment: KB |=≤ α iff for all interpretations M which
make KB true, either M |= α or M is not minimal (exists M ′ such
that M ′ < M and M ′ |= KB).

G53KRR G53KRR 19 / 29

Back to the example

KB = {Bird(tweety), ∀x(Bird(x) ∧ ¬Ab(x) ⊃ Flies(x))}
KB |=≤ Flies(tweety) because for every interpretation M which
makes KB true and Flies(tweety) false, it has to be that
I(tweety) ∈ I(Ab).
So for for every such interpretation there is an interpretation M ′

which is just like M, but I′(tweety) 6∈ I′(Ab) and
I′(tweety) ∈ I′(Flies), and M ′ still makes KB true and M ′ < M.

G53KRR G53KRR 20 / 29

Defaults

A default rule consists of a prerequisite α, justification β,
conclusion γ and says ‘if α holds and it is consistent to believe β,

then believe γ’:
α : β

γ

For example:
Bird(x) : Flies(x)

Flies(x)

Default rules where justification and conclusion are the same are
called normal default rules and are writted Bird(x)⇒ Flies(x).

G53KRR G53KRR 21 / 29

Default theories and extensions

A default theory KB consists of a normal first-order knowledge
base F and a set of default rules D
A set of reasonable beliefs given a default theory KB = {F ,D} is
called an extension of KB
E is an extension of (F ,D) iff for every sentence π,

π ∈ E ⇔ F ∪ {γ | α : β

γ
∈ D, α ∈ E ,¬β 6∈ E} |= π

G53KRR G53KRR 22 / 29

How one could construct an extension

π ∈ E ⇔ F ∪ {γ | α : β

γ
∈ D, α ∈ E ,¬β 6∈ E} |= π

1 E := F ;
2 close E under classical entailment: E := {π : E |= π}
3 choose some (substitution instance of) α:β

γ ∈ D
4 if α ∈ E , and ¬β 6∈ E (meaning, β is consistent with E),

E := E ∪ {γ}
5 go back to 2

G53KRR G53KRR 23 / 29

Example

F = {Bird(tweety)},D = {Bird(x) : Flies(x)
Flies(x)

}

E := {Bird(tweety)}
close E under classical entailment: E := {π : Bird(tweety) |= π}
Bird(tweety):Flies(tweety)

Flies(tweety) ∈ D

Bird(tweety) ∈ E , and ¬Flies(tweety) 6∈ E
E := E ∪ {Flies(tweety)}
E := {π : Bird(tweety),Flies(tweety) |= π}
there are no more rules to apply

G53KRR G53KRR 24 / 29

Example from 2008 exam, Q6e

F = {Dutchman(peter), Dutchman(hans), Dutchman(johan),

peter 6= hans, hans 6= johan, peter 6= johan,

¬Tall(peter) ∨ ¬Tall(hans)}

D = { Dutchman(x) : Tall(x)
Tall(x)

}

Three instances of the default rule:

Dutchman(peter) : Tall(peter)
Tall(peter)

Dutchman(hans) : Tall(hans)
Tall(hans)

Dutchman(johan) : Tall(johan)
Tall(johan)

G53KRR G53KRR 25 / 29

Exam 2008 example continued

Suppose we start constructing E1 with the first rule, for Peter.
Since ¬Tall(peter) 6∈ E1, we can add Tall(peter) to E1.
After we close E1 under consequence, from Tall(peter) and
¬Tall(peter) ∨ ¬Tall(hans) we get ¬Tall(hans) ∈ E1.
So now the second rule for Hans is not applicable.
The third rule is applicable, since ¬Tall(johan) 6∈ E1, we can add
Tall(johan) to E1

Another possible extension is E2: we use the second rule first, and
add Tall(hans) to E2.
Now the first rule is not applicable, because E2 contains
¬Tall(peter)
The third rule is applicable, since ¬Tall(johan) 6∈ E2, we can add
Tall(johan) to E2

G53KRR G53KRR 26 / 29

Another example with two extensions

Facts: F = {Republican(dick),Quaker(dick)}
Default rules: Republican(x)⇒ ¬Pacifist(x),
Quaker(x)⇒ Pacifist(x) .
Extension E1 (pick the rule Republican(x)⇒ ¬Pacifist(x) first) is
all consequences of
{Republican(dick),Quaker(dick),¬Pacifist(dick)}. Because we
start with E1 = {Republican(dick),Quaker(dick)},
¬¬Pacifist(dick) 6∈ E1, so we can add ¬Pacifist(dick) to E1.
Extension E2 (pick the rule Quaker(x)⇒ Pacifist(x) first) is all
consequences of
{Republican(dick),Quaker(dick),Pacifist(dick)}. Because we
start with E2 = {Republican(dick),Quaker(dick)},
¬Pacifist(dick) 6∈ E2, so we can add Pacifist(dick) to E2.

G53KRR G53KRR 27 / 29

Example with one extension

Facts: F = {Republican(dick),Quaker(dick), ∀x(Republican(x) ⊃
MemberOfPoliticalParty(x))}
Default rules: Republican(x)⇒ ¬Pacifist(x),

Quaker(x) : Pacifist(x) ∧ ¬MemberOfPoliticalParty(x)
Pacifist(x)

Closure of F under consequence includes:
{Republican(dick),Quaker(dick), ∀x(Republican(x) ⊃
MemberOfPoliticalParty(x)),MemberOfPoliticalParty(dick)}
The second default rule is not applicable, because
¬¬MemberOfPoliticalParty(dick) ∈ E
only the first rule is applicable, since ¬¬Pacifist(dick) 6∈ E , so
¬Pacifist(dick) is added.

G53KRR G53KRR 28 / 29

Any questions?

G53KRR G53KRR 29 / 29

