G53KRR J

Revision

G53KRR G53KRR 1/29

Plan of the lecture

exam format
common mistakes
resolution example
Bayesian networks
description logic
circumscription
defaults

any other questions

G53KRR G53KRR 2/29

Exam format

m 4 questions out of 4
m previous papers and answers on the web

G53KRR G53KRR 3/29

Common mistakes 1

First order logic question: show that S1, S2 do not logically entail S3
m Correct answer: describe an interpretation which makes S1 and
S2 true and S3 false
m Don’t:

m use truth tables for first order sentences
m attempt a resolution derivation of [] from S1, S2 and —S3, and then
stop and say ‘see, it does not work, so S3 is not entailed’

G53KRR G53KRR 4/29

Common mistakes 2

Resolution
m don’t apply resolution to two literals at the same time:

[A, B], [-A,—-B]
[]
it is not sound! AV B and —A Vv =B should not derive false.

m only substitute for variables (not constants or functional terms)
Don’'tdo a/f(x) or f(x)/a

MISTAKE

MISTAKE : [(P(f(x))[]i [-P(a)]

(you can do x/a, with f(x) becoming f(a)).

G53KRR G53KRR 5/29

Resolution example

KB = {VxPlus(0, x, x), YxVyvz(Plus(x, y, z) D Plus(s(x),y, s(z))}

(Meaning: Plus(x,y,z)is x +y = z,
O0+x=x,
x+y=z2((x+1)+y=(z2+1))

Show that KB |= Ju Plus(s(s(0)), s(s(s(0))), u).
(Meaning: that Ju (2 + 3 = u))

G53KRR G53KRR 6/29

Resolution example continued

—_

. [Plus(0, x1, x1)] (KB) (I renamed x to x1)

N

. [2Plus(x, y, z), Plus(s(x), y, s(z))] (KB)

w

. [=Plus(s(s(0)), s(s(s(0))), u)] (negation of JuPlus(2, 3, u))

SN

. [Plus(s(0), x1, s(x1))] from 1,2, x/0,y/x1,2/x1

(6)]

. [Plus(s(s(0)), x1, s(s(x1)))] from 4, 2, x/s(0), y/x1,z/s(x1)

[¢2]

- [1from 3,5, x1/s(s(s(0))), u/s(s(s(s(s(0)))))

G53KRR G53KRR 7129

Horn clauses

m A Horn clause is a clause with at most one positive literal.
m A unit clause is a clause with one literal.
m A positive Horn clause contains one positive literal.
m A negative Horn clause has no positive literals.
m Examples:
m [-P(x),~Q(x), R(x)] (some negative and one positive literal;
corresponds to a rule Vx(P(x) A Q(x) D R(x))

m [R(x)] (only one positive literal; corresponds to a fact)
m [-P(x),~Q(x)] (only negative literals; corresponds to a query)

G53KRR G53KRR 8/29

SLD resolution

An SLD derivation of clause ¢ from a set of clauses S is a sequence of
steps ¢y, ..., cn = ¢ such that:

mCccS
B C;.1 is aresolvent of ¢; and a clause in S.

Basic idea: in a proof, we use the clause we just derived plus some
clause in S. We can also arrange things so that all the clauses in the
derivation are negative.

SLD resolution is refutation-complete for Horn clauses (if [] is
derivable at all, it is derivable by SLD resolution).

G53KRR G53KRR 9/29

SLD resolution example

KB = {[p]7 [q]a [_'p7 -q, r]}
Check if r follows, so we add [—r] and try to derive [| by SLD

resolution.
S ={[pl,la], [=p,~q,], [-r]}

SLD derivation of [] from S:

¢ =[~r](in §)

¢ = [-p, —q] (resolvent of ¢y and [-p, —q, r])
¢z = [—q] (resolvent of ¢, and [p])

¢4 = [] (resolvent of c3 and [q]).

G53KRR G53KRR 10/29

Backward chaining

input: a finite set of atomic sentences gy, ..., qn

output: YES if KB entails all of g;, NO otherwise

procedure: SOLVE[q1, ..., gn]

if n = 0 then return YES

for each clause c in KB do
if ¢ = [not p1,...,not pm, q1] and SOLVE [p1,...,pm,q2,...,qn]
then return YES

end for

return NO

G53KRR G53KRR 11/29

Example

Backward chaining corresponds to SLD resolution.
Given KB = {[p]7 [q]7 [_‘p> -q, r]} and a query r:

SOLVE][r] [-r]
SOLVE[p,q] [-p, —q]
SOLVE(q] [-q]
SOLVE[] [
YES

G53KRR G53KRR 12/29

Forward chaining

input: an atomic sentence q

output: YES if KB entails g, NO otherwise

1. if g is marked as solved, return YES

2. ifthereis [-p1,...,—Pn,q¢] in KB such that p4, ..., p, are marked as
solved and gy is not marked solved: mark g; as solved and go to 1;
else return NO.

G53KRR G53KRR 13/29

Example

Given KB = {[p], [q],[-p, —q, r]} and a query r:

[p] is in KB and p is not marked solved; mark p as solved

another way of looking at it: add p to working memory

[q] is in KB and q is not marked solved; mark q as solved

another way of looking at it: add g to working memory

[-p,—q, r] is in KB, p, g are marked as solved, and r is not; mark r as
solved

another way of looking at it: if p, g are in working memory, and there is
arule pAq D r,then add r to working memory

YES

G53KRR G53KRR 14/29

Bayesian networks

m Directed acyclic graph
m Nodes: propositional variables; a directed edge from p; to p; if the
truth of p; affects the truth of p;. p; parent of p;.
[]
J((P1,...,Pn))=Pr(Py A... N\ Pp)
m Chain rule
PI’(P1 FANPIAN Pn) = PI’(P1) . PF(P2’P1) cee PI’(Pn’P1 FANPIRAN Pn_1)

m Independence assumption Each propositional variable in the
belief network is conditionally independent from non-parent
variables given its parent variables:

Pr(Pi | P1 A ...NPji_1) = Pr(P;| parents(P;))

where parents(P;) is the conjunction of literals which correspond
to parents of p; in the network.

G53KRR G53KRR 15/29

I
Mistake 3

m Mistake: suppose a network consists of two variables, p; and po,
such that there is an edge from py to po. The mistake is to say that
Pr(p; | p2) = Pr(p1) because p» is not a parent of py (so apply the
independence assumption ‘in reverse order of indices’)

m This is a much more subtle (and understandable given the way the
independenc assumption is stated) mistake.

m The independence assumption statement assumes that in the
state description, the variables are listed in topological sort order
(if there is an edge from p; to p;, then p; appears before p; in the
order). This is always possible since the graph is acyclic. So we
never check probability of parent conditioned on a child or a set of
descendants.

G53KRR G53KRR 16/29

Circumscription

® The main idea: formalise common sense rules which admit
exceptions.

m Rules like ‘Birds fly’ formalised as
Vx(Bird(x) A ~Ab(x) D Flies(x))

m To check whether something is entailed by a knowledge base
which contains such rules, we only check if it is entailed under the
assumption that the set of exceptions /(Ab) is as small as possible

m This is called circumscription or minimal entailment

G53KRR G53KRR 17/29

Example

KB = {Bird(tweety), Vx(Bird(x) A —~Ab(x) D Flies(x))}

m Classically, KB [~ Flies(tweety) because there are interpretations
of KB where Tweety is an exceptional bird (it is in /(Ab)) and it
does not fly

m But such interpretations do not minimise the set of exceptions:
nothing which is said in KB forces us to think that Tweety is
exceptional, so it does not have to be in /(Ab)

m If we only consider interpretation which satisfy KB and where the
set of exceptions is as small as possible, Tweety is not in this set,
so Bird(tweety) N ~Ab(tweety) holds and hence Flies(tweety)
holds

m KB entails Flies(tweety) on ‘minimal’ interpretations where /(Ab)
is circumscribed (made as small as possible)

G53KRR G53KRR 18/29

Definition of minimal entailment

m Let My = (D, I1) and M, = (D, k) be two interpretations over the
same domain such that every constant and function are
interpreted the same way.

B M <M < (Ab) C L(Ab)

m M < M if My < M but not M, < My. (There are strictly fewer
abnormal things in My).

m Minimal entailment: KB =< « iff for all interpretations M which
make KB true, either M |= o or M is not minimal (exists M’ such
that M' < M and M’ = KB).

G53KRR G53KRR 19/29

-]
Back to the example

m KB = {Bird(tweety),Vx(Bird(x) A =~Ab(x) D Flies(x))}
m KB |=< Flies(tweety) because for every interpretation M which

makes KB true and Flies(tweety) false, it has to be that
I(tweety) € I(Ab).
m So for for every such interpretation there is an interpretation M’

which is just like M, but I'(tweety) & I'(Ab) and
I'(tweety) € I'(Flies), and M’ still makes KB true and M’ < M.

G53KRR G53KRR 20/29

Defaults

m A default rule consists of a prerequisite «, justification 3,
conclusion ~ and says ‘if « holds and it is consistent to believe g3,

a:p
Y

then believe ~’:

m For example:
Bird(x) : Flies(x)
Flies(x)

m Default rules where justification and conclusion are the same are
called normal default rules and are writted Bird(x) = Flies(x).

G53KRR G53KRR 21/29

Default theories and extensions

m A default theory KB consists of a normal first-order knowledge
base F and a set of default rules D

m A set of reasonable beliefs given a default theory KB = {F, D} is
called an extension of KB

m E is an extension of (F, D) iff for every sentence ,

rcE o Fu{fy]a;ﬁeD,aeE,ﬂ[MZE}):w

G53KRR G53KRR 22/29

How one could construct an extension

TeE & FU{’Y|OZ;BED,O£€E,—|B€E}):7T
E:=F;
close E under classical entailment: E .= {r: E =7}
choose some (substitution instance of) C“T:B eD
if « € E, and =8 € E (meaning, /3 is consistent with E),
E=EuU{y}
go back to 2

G53KRR G53KRR 23/29

Example
o _ Bird(x) : Flies(x)
F = {Bird(tweety)}, D = { Flies(x) }
m E = {Bird(tweety)}
m close E under classical entailment: E := {r : Bird(tweety) = r}
- Bird(tw;gg();;ﬁzz%weety) cD
m Bird(tweety) € E, and —Flies(tweety) ¢ E

E .= E U {Flies(tweety)}
E := {n : Bird(tweety), Flies(tweety) = 7}
there are no more rules to apply

G53KRR G53KRR 24 /29

Example from 2008 exam, Q6e

F = {Dutchman(peter), Dutchman(hans), Dutchman(johan),

peter + hans, hans # johan, peter # johan,
—Tall(peter) v —~Tall(hans)}

Dutchman(x) : Tall(x)

D={ Tall(x) !

Three instances of the default rule:

Dutchman(peter) : Tall(peter) Dutchman(hans) : Tall(hans)
Tall(peter) Tall(hans)

Dutchman(johan) : Tall(johan)
Tall(johan)

G53KRR G53KRR 25/29

Exam 2008 example continued

m Suppose we start constructing E; with the first rule, for Peter.
Since —Tall(peter) ¢ E, we can add Tall(peter) to E;.

m After we close E; under consequence, from Tall(peter) and
—Tall(peter) v —Tall(hans) we get —Tall(hans) € E;.

m So now the second rule for Hans is not applicable.

m The third rule is applicable, since —Tall(johan) ¢ E4, we can add
Tall(johan) to E;

m Another possible extension is Eo: we use the second rule first, and
add Tall(hans) to E;.

m Now the first rule is not applicable, because E, contains
—Tall(peter)

m The third rule is applicable, since —Tall(johan) ¢ E,, we can add
Tall(johan) to Ep

G53KRR G53KRR 26/29

Another example with two extensions

m Facts: F = {Republican(dick), Quaker(dick)}

m Default rules: Republican(x) = —Pacifist(x),
Quaker(x) = Pacifist(x) .

m Extension E; (pick the rule Republican(x) = —Pacifist(x) first) is
all consequences of
{Republican(dick), Quaker(dick), —Pacifist(dick)}. Because we
start with E; = { Republican(dick), Quaker(dick)},
——Pacifist(dick) ¢ E4, so we can add —Pacifist(dick) to E;.

m Extension E; (pick the rule Quaker(x) = Pacifist(x) first) is all
consequences of
{Republican(dick), Quaker(dick), Pacifist(dick)}. Because we
start with E, = { Republican(dick), Quaker(dick)},
—Pacifist(dick) ¢ E,, so we can add Pacifist(dick) to Es.

G53KRR G53KRR 27/29

Example with one extension

m Facts: F = {Republican(dick), Quaker(dick), Vx(Republican(x) >
MemberOfPoliticalParty(x))}

m Default rules: Republican(x) = —Pacifist(x),

Quaker(x) : Pacifist(x) A ~MemberOfPoliticalParty(x)
Pacifist(x)

m Closure of F under consequence includes:
{Republican(dick), Quaker(dick),Vx(Republican(x) D
MemberOfPoliticalParty(x)), MemberOfPoliticalParty (dick) }

m The second default rule is not applicable, because
—~—MemberOfPoliticalParty (dick) € E

m only the first rule is applicable, since ——Pacifist(dick) ¢ E, so
—Pacifist(dick) is added.

G53KRR G53KRR 28/29

Any questions?

G53KRR G53KRR 29/29

