#### G53KRR

Revision

#### Plan of the lecture

- exam format
- common mistakes
- resolution example
- Bayesian networks
- description logic
- circumscription
- defaults
- any other questions

### Exam format

- 4 questions out of 4
- previous papers and answers on the web

#### Common mistakes 1

First order logic question: show that S1, S2 do not logically entail S3

- Correct answer: describe an interpretation which makes S1 and S2 true and S3 false
- Don't:
  - use truth tables for first order sentences
  - attempt a resolution derivation of [] from S1, S2 and ¬S3, and then stop and say 'see, it does not work, so S3 is not entailed'

#### Common mistakes 2

#### Resolution

don't apply resolution to two literals at the same time:

MISTAKE: 
$$\frac{[A,B], [\neg A, \neg B]}{[]}$$

it is not sound!  $A \vee B$  and  $\neg A \vee \neg B$  should not derive false.

• only substitute for variables (not constants or functional terms) Don't do a/f(x) or f(x)/a

MISTAKE : 
$$\frac{[(P(f(x))], [\neg P(a)]}{[]}$$

(you can do x/a, with f(x) becoming f(a)).

### Resolution example

$$KB = \{ \forall x Plus(0, x, x), \forall x \forall y \forall z (Plus(x, y, z) \supset Plus(s(x), y, s(z)) \}$$
  
(Meaning:  $Plus(x, y, z)$  is  $x + y = z$ ,  $0 + x = x$ ,  $x + y = z \supset ((x + 1) + y = (z + 1)))$   
Show that  $KB \models \exists u \ Plus(s(s(0)), s(s(s(0))), u)$ .  
(Meaning: that  $\exists u \ (2 + 3 = u)$ )

G53KRR

### Resolution example continued

- 1.  $[Plus(0, x_1, x_1)]$  (KB) (I renamed x to  $x_1$ )
- 2.  $[\neg Plus(x, y, z), Plus(s(x), y, s(z))]$  (KB)
- 3.  $[\neg Plus(s(s(0)), s(s(s(0))), u)]$  (negation of  $\exists uPlus(2, 3, u))$
- 4.  $[Plus(s(0), x_1, s(x_1))]$  from 1,2,  $x/0, y/x_1, z/x_1$
- 5.  $[Plus(s(s(0)), x_1, s(s(x_1)))]$  from 4, 2,  $x/s(0), y/x_1, z/s(x_1)$
- 6. [] from 3,5,  $x_1/s(s(s(0))), u/s(s(s(s(s(0)))))$

#### Horn clauses

- A Horn clause is a clause with at most one positive literal.
- A unit clause is a clause with one literal.
- A positive Horn clause contains one positive literal.
- A negative Horn clause has no positive literals.
- Examples:
  - $[\neg P(x), \neg Q(x), R(x)]$  (some negative and one positive literal; corresponds to a rule  $\forall x (P(x) \land Q(x) \supset R(x))$
  - $\blacksquare$  [R(x)] (only one positive literal; corresponds to a fact)
  - $[\neg P(x), \neg Q(x)]$  (only negative literals; corresponds to a query)

#### SLD resolution

An SLD derivation of clause c from a set of clauses S is a sequence of steps  $c_1, \ldots, c_n = c$  such that:

- $c_1 \in S$
- lacksquare  $c_{i+1}$  is a resolvent of  $c_i$  and a clause in S.

Basic idea: in a proof, we use the clause we just derived plus some clause in S. We can also arrange things so that all the clauses in the derivation are negative.

SLD resolution is refutation-complete for Horn clauses (if [] is derivable at all, it is derivable by SLD resolution).

G53KRR

### SLD resolution example

```
KB = \{ [p], [q], [\neg p, \neg q, r] \}
```

Check if r follows, so we add  $[\neg r]$  and try to derive  $[\ ]$  by SLD resolution.

$$\mathcal{S} = \{[p], [q], [\neg p, \neg q, r], [\neg r]\}$$

SLD derivation of [] from S:

$$c_1 = [\neg r] \text{ (in } S)$$

$$c_2 = [\neg p, \neg q]$$
 (resolvent of  $c_1$  and  $[\neg p, \neg q, r]$ )

$$c_3 = [\neg q]$$
 (resolvent of  $c_2$  and  $[p]$ )

$$c_4 = []$$
 (resolvent of  $c_3$  and  $[q]$ ).

### Backward chaining

```
input: a finite set of atomic sentences q_1, \ldots, q_n output: YES if KB entails all of q_i, NO otherwise procedure: SOLVE[q1, ..., qn] if n = 0 then return YES for each clause c in KB do . if c = [not \ p1, ..., not \ pm, \ q1] and SOLVE [p1,...,pm,q2,...,qn] . then return YES end for return NO
```

### Example

```
Backward chaining corresponds to SLD resolution.
```

```
Given KB = \{[p], [q], [\neg p, \neg q, r]\} and a query r:
```

```
SOLVE[r]
SOLVE[p,q]
SOLVE[q]
SOLVE[]
YES
```

### Forward chaining

**input:** an atomic sentence q **output:** YES if KB entails q, NO otherwise

- 1. if q is marked as solved, return YES
- 2. if there is  $[\neg p_1, \dots, \neg p_n, q_1]$  in KB such that  $p_1, \dots, p_n$  are marked as solved and  $q_1$  is not marked solved: mark  $q_1$  as solved and go to 1; else return NO.

### Example

```
Given KB = \{[p], [q], [\neg p, \neg q, r]\} and a query r:
```

[p] is in KB and p is not marked solved; mark p as solved another way of looking at it: add p to working memory [q] is in KB and q is not marked solved; mark q as solved another way of looking at it: add q to working memory  $[\neg p, \neg q, r]$  is in KB, p, q are marked as solved, and r is not; mark r as solved another way of looking at it: if p, q are in working memory, and there is a rule  $p \land q \supset r$ , then add r to working memory YFS

### Bayesian networks

- Directed acyclic graph
- Nodes: propositional variables; a directed edge from  $p_i$  to  $p_j$  if the truth of  $p_i$  affects the truth of  $p_i$ .  $p_i$  parent of  $p_i$ .

$$J(\langle P_1,\ldots,P_n\rangle)=Pr(P_1\wedge\ldots\wedge P_n)$$

Chain rule

$$Pr(P_1 \wedge \ldots \wedge P_n) = Pr(P_1) \cdot Pr(P_2|P_1) \cdot \cdots \cdot Pr(P_n|P_1 \wedge \ldots \wedge P_{n-1})$$

■ Independence assumption Each propositional variable in the belief network is conditionally independent from non-parent variables given its parent variables:

$$Pr(P_i \mid P_1 \land ... \land P_{i-1}) = Pr(P_i \mid parents(P_i))$$

where  $parents(P_i)$  is the conjunction of literals which correspond to parents of  $p_i$  in the network.

#### Mistake 3

- Mistake: suppose a network consists of two variables,  $p_1$  and  $p_2$ , such that there is an edge from  $p_1$  to  $p_2$ . The mistake is to say that  $Pr(p_1 \mid p_2) = Pr(p_1)$  because  $p_2$  is not a parent of  $p_1$  (so apply the independence assumption 'in reverse order of indices')
- This is a much more subtle (and understandable given the way the independenc assumption is stated) mistake.
- The independence assumption statement assumes that in the state description, the variables are listed in topological sort order (if there is an edge from  $p_i$  to  $p_j$ , then  $p_i$  appears before  $p_j$  in the order). This is always possible since the graph is acyclic. So we never check probability of parent conditioned on a child or a set of descendants.

## Circumscription

- The main idea: formalise common sense rules which admit exceptions.
- Rules like 'Birds fly' formalised as

$$\forall x (Bird(x) \land \neg Ab(x) \supset Flies(x))$$

- To check whether something is entailed by a knowledge base which contains such rules, we only check if it is entailed under the assumption that the set of exceptions *I*(*Ab*) is as small as possible
- This is called circumscription or minimal entailment

G53KRR G53KRR 17 / 29

### Example

$$KB = \{Bird(tweety), \forall x (Bird(x) \land \neg Ab(x) \supset Flies(x))\}$$

- Classically, KB \( \notin \) Flies(tweety) because there are interpretations of KB where Tweety is an exceptional bird (it is in I(Ab)) and it does not fly
- But such interpretations do not minimise the set of exceptions: nothing which is said in *KB* forces us to think that Tweety is exceptional, so it does not have to be in *I*(*Ab*)
- If we only consider interpretation which satisfy KB and where the set of exceptions is as small as possible, Tweety is not in this set, so Bird(tweety) ∧ ¬Ab(tweety) holds and hence Flies(tweety) holds
- KB entails Flies(tweety) on 'minimal' interpretations where I(Ab) is circumscribed (made as small as possible)

#### Definition of minimal entailment

- Let  $M_1 = (D, I_1)$  and  $M_2 = (D, I_2)$  be two interpretations over the same domain such that every constant and function are interpreted the same way.
- $\blacksquare M_1 \leq M_2 \Leftrightarrow I_1(Ab) \subseteq I_2(Ab)$
- $M_1 < M_2$  if  $M_1 \le M_2$  but not  $M_2 \le M_1$ . (There are strictly fewer abnormal things in  $M_1$ ).
- *Minimal entailment:*  $KB \models_{\leq} \alpha$  iff for all interpretations M which make KB true, either  $M \models \alpha$  or M is not minimal (exists M' such that M' < M and  $M' \models KB$ ).

### Back to the example

- $KB = \{Bird(tweety), \forall x(Bird(x) \land \neg Ab(x) \supset Flies(x))\}$
- $KB \models_{\leq} Flies(tweety)$  because for every interpretation M which makes KB true and Flies(tweety) false, it has to be that  $I(tweety) \in I(Ab)$ .
- So for for every such interpretation there is an interpretation M' which is just like M, but  $l'(tweety) \notin l'(Ab)$  and  $l'(tweety) \in l'(Flies)$ , and M' still makes KB true and M' < M.

#### **Defaults**

- A default rule consists of a prerequisite  $\alpha$ , justification  $\beta$ , conclusion  $\gamma$  and says 'if  $\alpha$  holds and it is consistent to believe  $\beta$ , then believe  $\gamma$ ':  $\frac{\alpha:\beta}{\gamma}$
- For example:

$$\frac{Bird(x):Flies(x)}{Flies(x)}$$

■ Default rules where justification and conclusion are the same are called *normal default rules* and are writted  $Bird(x) \Rightarrow Flies(x)$ .

21/29

G53KRR G53KRR

#### Default theories and extensions

- A default theory *KB* consists of a normal first-order knowledge base *F* and a set of default rules *D*
- A set of reasonable beliefs given a default theory  $KB = \{F, D\}$  is called an *extension* of KB
- E is an *extension* of (F, D) iff for every sentence  $\pi$ ,

$$\pi \in E \Leftrightarrow F \cup \{\gamma \mid \frac{\alpha : \beta}{\gamma} \in D, \alpha \in E, \neg \beta \notin E\} \models \pi$$

22 / 29

G53KRR G53KRR

#### How one could construct an extension

$$\pi \in \mathcal{E} \iff \mathcal{F} \cup \{\gamma \mid \frac{\alpha : \beta}{\gamma} \in \mathcal{D}, \alpha \in \mathcal{E}, \neg \beta \not\in \mathcal{E}\} \models \pi$$

- 1 E := F;
- **2** close *E* under classical entailment:  $E := \{\pi : E \models \pi\}$
- 3 choose some (substitution instance of)  $\frac{\alpha:\beta}{\gamma}\in D$
- 4 if  $\alpha \in E$ , and  $\neg \beta \notin E$  (meaning,  $\beta$  is consistent with E),  $E := E \cup \{\gamma\}$
- 5 go back to 2

### Example

$$F = \{Bird(tweety)\}, D = \{\frac{Bird(x) : Flies(x)}{Flies(x)}\}\$$

- *E* := {*Bird*(*tweety*)}
- close *E* under classical entailment:  $E := \{\pi : Bird(tweety) \models \pi\}$
- $\frac{Bird(tweety):Flies(tweety)}{Flies(tweety)} \in D$
- $Bird(tweety) \in E$ , and  $\neg Flies(tweety) \notin E$  $E := E \cup \{Flies(tweety)\}$
- $E := \{\pi : Bird(tweety), Flies(tweety) \models \pi\}$
- there are no more rules to apply



### Example from 2008 exam, Q6e

$$F = \{ Dutchman(peter), Dutchman(hans), Dutchman(johan), \\ peter \neq hans, hans \neq johan, peter \neq johan, \\ 
\neg Tall(peter) \lor \neg Tall(hans) \} \\ D = \{ \frac{Dutchman(x) : Tall(x)}{Tall(x)} \}$$

Three instances of the default rule:

### Exam 2008 example continued

- Suppose we start constructing  $E_1$  with the first rule, for Peter. Since  $\neg Tall(peter) \notin E_1$ , we can add Tall(peter) to  $E_1$ .
- After we close  $E_1$  under consequence, from Tall(peter) and  $\neg Tall(peter) \lor \neg Tall(hans)$  we get  $\neg Tall(hans) \in E_1$ .
- So now the second rule for Hans is not applicable.
- The third rule is applicable, since  $\neg Tall(johan) \notin E_1$ , we can add Tall(johan) to  $E_1$
- Another possible extension is  $E_2$ : we use the second rule first, and add Tall(hans) to  $E_2$ .
- Now the first rule is not applicable, because  $E_2$  contains  $\neg Tall(peter)$
- The third rule is applicable, since  $\neg Tall(johan) \notin E_2$ , we can add Tall(johan) to  $E_2$

G53KRR G53KRR 26 / 29

### Another example with two extensions

- Facts:  $F = \{Republican(dick), Quaker(dick)\}$
- Default rules:  $Republican(x) \Rightarrow \neg Pacifist(x)$ ,  $Quaker(x) \Rightarrow Pacifist(x)$ .
- Extension  $E_1$  (pick the rule  $Republican(x) \Rightarrow \neg Pacifist(x)$  first) is all consequences of  $\{Republican(dick), Quaker(dick), \neg Pacifist(dick)\}$ . Because we start with  $E_1 = \{Republican(dick), Quaker(dick)\}$ ,  $\neg \neg Pacifist(dick) \notin E_1$ , so we can add  $\neg Pacifist(dick)$  to  $E_1$ .
- Extension  $E_2$  (pick the rule  $Quaker(x) \Rightarrow Pacifist(x)$  first) is all consequences of  $\{Republican(dick), Quaker(dick), Pacifist(dick)\}$ . Because we start with  $E_2 = \{Republican(dick), Quaker(dick)\}$ ,  $\neg Pacifist(dick) \notin E_2$ , so we can add Pacifist(dick) to  $E_2$ .

G53KRR G53KRR 27 / 29

### Example with one extension

- Facts:  $F = \{Republican(dick), Quaker(dick), \forall x (Republican(x)) \supset MemberOfPoliticalParty(x))\}$
- Default rules:  $Republican(x) \Rightarrow \neg Pacifist(x)$ ,

$$Quaker(x): Pacifist(x) \land \neg MemberOfPoliticalParty(x)$$

$$Pacifist(x)$$

- Closure of F under consequence includes: {Republican(dick), Quaker(dick), ∀x(Republican(x) ⊃ MemberOfPoliticalParty(x)), MemberOfPoliticalParty(dick)}
- The second default rule is not applicable, because  $\neg\neg MemberOfPoliticalParty(dick) \in E$
- only the first rule is applicable, since  $\neg\neg Pacifist(dick) \notin E$ , so  $\neg Pacifist(dick)$  is added.

# Any questions?