
G54DIA:
Designing Intelligent Agents

Lecture 12: Multi-Agent Systems II

Brian Logan
School of Computer Science

bsl@cs.nott.ac.uk

Outline of this lecture

•  teamwork

•  joint intentions theory

•  teamwork models

•  example: STEAM

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 2	

Multi-agent systems

•  a multi-agent system is a system in which several agents share a
common task environment and cooperate at least part of the time

•  the agents can have any of the architectures we have seen so far, e.g.,
reactive or deliberative or hybrid

•  all the agents may have the same architecture or they may have
different architectures

•  the environment may not appear the same to the agents if they are
different, e.g., if they have different sensors and actions

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 3	

Co-operation in multi-agent systems

•  agents are self-interested and do not share a common goal

– e.g., they are designed to represent the interests of different
individuals or organisations

– agents co-operate because it helps them achieve their own goals

•  agents implicitly or explicitly share a common goal

– benevolently work to achieve the overall objectives of the system,
even when these conflict with the agent’s own goals

– e.g., when the agents are ‘owned’ by the same organisation or
individual

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 4	

Shared goals
•  we will focus on the special case in which all the agents in the MAS

cooperate to achieve one or more system or organisational goals

•  the agents co-operate to perform some task that a single agent can’t do on
its own

– because a single agent doesn’t have all the capabilities or knowledge
required to perform the task

– because a single agent would be too slow

•  note that there may still be elements of competition, e.g., if the agents
compete for the organisation’s resources

•  mechanisms are still required to ensure that resources and tasks are
allocated appropriately

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 5	

Task sharing

•  task sharing is the problem of determining how tasks are allocated to
individual agents in a multi-agent system

•  for homogeneous (e.g., totipotent) agents this is straightforward–only
concern is load balancing

•  if the agents are heterogeneous (have differing capabilities) and/or are
autonomous (can refuse tasks), then task sharing involves reaching
agreements between agents

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 6	

Contract net protocol

•  contract net protocol is a way of achieving efficient co-operation
through task sharing in networks of (possibly heterogeneous,
autonomous) agents

– task announcement: an agent which generates (or receives) a task
broadcasts a description of the task to some or all of the agents

– bid response: agents respond to the task announcement with a bid

– task allocation: the agent which announced the task allocates it to
one or more of the bidding agents

– expediting: the agent to which the task was allocated carries it out

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 7	

Agent teams

•  for many complex, dynamic multi-agent domains, e.g.,

– virtual training

– entertainment

– information integration

– robotics etc.

•  more complex models of teamwork are required

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 8	

Teamwork

•  teamwork involves co-operation between agents to achieve a common
goal

•  team members have differing, incomplete, inconsistent views of their
environment

•  team members may fail to fulfil their responsibilities or discover
unexpected opportunities

•  team members should respond appropriately to failures and
opportunities

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 9	

Examples of teamwork failures

… from a military simulation which included pilot agents for a company
of synthetic attack helicopters:

•  on abnormal termination of an engagement, the company commander
returned to base alone, abandoning members of its own company at
the battle position

•  on reaching the holding area the company waited while a single scout
went to scout the battle position; the scout crashed into a hillside and
the rest of the company waited indefinitely for the scout’s report

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 10	

More examples of teamwork failures

•  only a scout made it to the holding area (all the other helicopters
crashed or were shot down), but the scout scouted the battle position
anyway, and waited indefinitely for its non existent company to move
forward

•  when all the members of the company ran out of ammunition, the
company failed to infer that their mission could not continue

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 11	

Avoiding teamwork failures

•  one way to overcome these problems is to keep adding domain-specific
coordination plans

– however without a framework which allows prediction of teamwork
failures, coordination plans have to be added on a case by case basis
after the failure has been encountered in an actual run

–  for complex domains, a large number of coordination plans are
required

– difficult to reuse the resulting plans in other domains

•  solution: explicit model of teamwork based on joint intentions theory

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 12	

Joint intentions

•  a team of agents co-operating to achieve a goal must have:

– a joint commitment to the (team) goal; and

–  individual commitments to the specific tasks they have been assigned

•  joint commitment is distributed between the team members – requires
rules or protocols for:

– how an agent should behave towards its fellow team members while
the joint commitment is in force

–  the conditions under which a joint commitment can be abandoned

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 13	

Joint intentions theory (Cohen & Levesque)

•  a team T jointly intends a team action if team members are jointly
committed to completing that team action, while mutually believing
that they are doing so

•  a joint commitment is defined as joint persistent goal, JPG(T, p, q),
where p denotes the completion of a team action, and q is an
(ir)relevance condition, which allows the team to drop the JPG if they
mutually believe that q is false

•  to enter into a joint commitment, all team members must establish
appropriate mutual beliefs and commitments via an explicit exchange
of request and confirm (or refuse) speech acts

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 14	

Joint persistent goals

•  a joint persistent goal JPG(T, p, q) holds iff:

– all team members mutually believe that p is currently false

– all team members have p as their mutual goal, i.e., they mutually
know that they want p to be eventually true

– all team members mutually believe that until p is known to be
achieved, unachievable or irrelevant, they mutually believe that
they each hold p as a weak achievement goal WAG(m, p, T, q)

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 15	

Weak achievement goals

•  WAG(m, p, T, q) where m is a team member in T, implies that one of
the following holds:

– m believes p is currently false and wants it to be eventually true,
i.e., p is a normal achievement goal; or

– having privately discovered p to be achieved, unachievable, or
irrelevant (because q is false), m has committed to having this
private belief become T’s mutual belief

– this typically involves m communicating with its team mates about
the status of p

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 16	

Mutual belief

•  mutual belief means that “all agents believe that p, and all agents
believe that all agents believe that p”

•  it ensures that team members are updated about the status of team
activities

•  the commitment to attain mutual belief in the termination of p is a key
aspect of JPG

•  if a team member, m, privately believes that p has terminated (for
whatever reason), JPG(T, p, q) is dissolved, but m is left with a
commitment to have its private belief become T’s mutual belief

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 17	

Teamwork models

•  each agent has a general model of teamwork

– agents autonomously reason about their coordination and
communication responsibilities using the model

– allows each individual agent to anticipate and avoid (or recover
from) teamwork failures

•  teamwork models should be reusable across domains

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 18	

Example: STEAM

•  STEAM (Shell for TEAMwork) is a teamwork model based on joint
intentions theory developed for SOAR agents (Tambe 1997)

•  teamwork is is achieved by agents building up a partial hierarchy of
joint intentions

•  agents monitor the team’s and individual member’s performance to
detect and recover from failures

•  to reduce the communication overhead of teamwork, a decision
theoretic model is used to determine when to communicate
information to other members of the team

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 19	

STEAM teams
•  teams can be flat or hierarchically organised

•  each team defines a set of roles which can be assigned to individuals or
sub-teams

•  roles may be either persistent or assigned on a short term basis, and be be
pre-assigned or dynamically reassigned during plan execution

•  team activities are represented by team operators (reactive plans)

•  each operator specifies a particular task and how these can be broken
down into subtasks

•  team operators evaluated relative to team state memory which stores the
(agent’s view of) the mutual beliefs of the team

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 20	

STEAM teams

•  team organisation is separate from task decomposition specified by
team operators

•  mapping from team organisation to tasks is via roles

•  roles constrain which sub-tasks of the current team operator an agent
can adopt

•  an agent can only perform those tasks which are consistent with its
current role within the team

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 21	

Implementation

•  three categories of domain independent rules:

•  coherence preserving rules which ensure that agents communicate to
establish mutual belief of relevant conditions (e.g., a plan becoming
unachievable)

•  monitor and repair rules which specify how team members can be
replaced if they fail to achieve their tasks

•  communication rules which evaluate the utility of communication (to
avoid redundant commnunication)

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 22	

Applications of STEAM

•  STEAM has been applied to a (small) number of teamwork problems
involving teams of up to 16 agents, e.g.:

•  military training simulations:

– pilot agents for a company of 8 synthetic attack helicopters

– pilot agents for 4-12 transport helicopters protected by 2-4 escort
helicopters

•  RoboCup: coordinating play in the CMUnited RoboCup team

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 23	

Architectural implications of teamwork

•  teamwork models require modifications to the underlying agent
architecture

•  typically requires explicit representations of mutual beliefs, team plans,
and team goals

•  for STEAM this involved:

– changes to the SOAR architecture

– about 300 (mostly) domain-independent SOAR rules which
implement the teamwork model

•  however for typical SOAR agents, the overhead of the teamwork model is
fairly small

© Brian Logan 2014	
 G54DIA Lecture 12: Multi-Agent Systems II	
 24	

The rest of the module

•  lecture tomorrow (6th of March) on the second coursework

•  group tutorial next week (10th of March, 9-10)

•  individual tutorials: 10th of March, 11-12 and during all remaining
lecture slots apart from 17th of March, 9-10

•  a lecture with feedback on coursework 1 and SET/SEM (17th of
March, 9-10)

•  cw2 submission Monday 30 March 23:55

	

	

	

G54DIA Lecture 12: Multi-Agent Systems II	
 25	

