
G54DIA:
Designing Intelligent Agents

Lecture 3: Reactive Architectures I

Natasha Alechina
School of Computer Science

nza@cs.nott.ac.uk

Outline of this lecture

•  role of agent architectures

•  kinds of agent architectures

•  simple reactive architectures

•  examples

– Braitenberg vehicles

– Boids

•  advantages and disadvantages of simple reactive architectures

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 2	

Importance of architecture

•  focus of this module will mostly be on agent architectures:

– what sorts of architectures there are; and

– which architectures are appropriate for different tasks and
environments

•  to program an agent which is successful in a given task environment,
we must choose an architecture which is appropriate for that task
environment

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 3	

The architecture as a virtual machine

•  the architecture defines a (real or virtual) machine which runs the
agent program

•  defines the atomic operations of the agent program and implicitly
determines the components of the agent

•  determines which operations happen automatically, without the agent

program having to do anything

•  e.g., the interaction between memory, learning and reasoning

•  an architecture constrains kinds of agent programs we can write
(easily)

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 4	

Architectural view of an agent

•  program: a function mapping
from goals & percepts to
actions (& results) expressed in
terms of virtual machine
operations

•  state: the virtual machine
representations on which the
agent program operates

•  architecture: a virtual machine
that runs the agent program and
updates the agent state

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 5	

Task"

Environment"

goals"results"

percepts" actions"

Program" State"

Architecture"

Hierarchies of virtual machines

•  in many agents we have a whole hierarchy of virtual machines

– the agent architecture is usually implemented in terms of a
programming language, which in turn is implemented using the
instruction set of a particular CPU (or a JVM)

– likewise some ‘agent programs’ together with their architecture
can implement a new, higher-level architecture (virtual machine)

•  used without qualification, ‘agent architecture’ means the most
abstract architecture or the highest level virtual machine

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 6	

Properties of architectures

•  an agent architecture can be seen as defining a class of agent programs

•  just as programs have properties that make them more or less
successful in a given task environment

•  architectures (classes of programs) have higher-level properties that
determine their suitability for a task environment

•  choosing an appropriate architecture can make it much easier to
develop an agent program for a particular task environment

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 7	

Task environments & architectures

•  to choose an architecture which is appropriate for a given task
environment we must be able to characterise both the architecture and
the task environment

•  properties of task environments (last lecture)

•  properties of agent architectures (this and subsequent lectures)

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 8	

Kinds of agent architectures

•  uniform architectures

– reactive architectures

– deliberative architectures

•  hybrid architectures

– reactive and deliberative components

•  multi-agent system architectures

– many uniform or hybrid architectures, each with additional
coordination component(s)

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 9	

Simple reactive architectures

•  actions are directly triggered by percepts

– no representations of the environment

– predefined, fixed response to a situation

– fast response to changes in the environment

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 10	

Agent"
percept action

Action selection function

•  the action selection function for a simple reactive agent looks like

selectAction : Event Action

•  i.e., it responds only to single events in a predetermined way

•  add state to respond to sequences of events (next lecture)

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 11	

€

→

Action selection

•  same percept may trigger multiple actions

•  actions can be combined in various ways

– multiple actions may be executed in parallel

– combined into a single action

– one action may take precedence over the others

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 12	

Agent"

Parallel actions

•  actions which don’t interfere with each other are executed in parallel

(within the limitations of the architecture)

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 13	

percept(s)a

percept(s)b

percept(s)c

action1

action2

action3

Agent"

Combined actions

•  distinct actions triggered by different percepts are combined into a
single composite action

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 14	

actioni

percept(s)a

percept(s)b

percept(s)c

Agent"

Prioritised actions

•  actions interfere with each other, and the most important action takes
precedence

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 15	

action1 percept(s)a

percept(s)b

percept(s)c

Example: Braitenberg vehicles

•  a series of thought experiments designed to show how seemingly
complex behaviour can result from very simple reactive architectures

•  Braitenberg created a wide range of vehicles, including those (he)
imagined to exhibit:

– cowardice

– aggression

– love …

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 16	

Example: Braitenberg vehicles

Braitenberg’s vehicles use direct, excitatory and inhibitory couplings of
sensors to motors:

•  sensors respond to features in the environment, e.g., heat, light,
obstacles etc.

•  motors move the vehicle in response to signals from the sensors

•  connections carry signals from the sensors to the motors and either
cause them to turn or inhibit them from turning

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 17	

Braitenberg vehicle 1

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 18	

+	

+	

Braitenberg vehicle 2a

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 19	

+	

+	

Braitenberg vehicle 2b

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 20	

+	

+	

Braitenberg vehicle 3a

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 21	

−	

−	

Braitenberg vehicle 3b

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 22	

−	

−	

Braitenberg vehicle 3c

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 23	

+	

+	

+	

+	

Braitenberg vehicles summary

•  Braitenberg’s vehicles illustrate how simple reactive architectures can
produce complex emergent behaviour

•  however complexity may be a reflection of a complex environment

•  we can ascribe goals to Braitenberg vehicles, e.g., goal of avoiding
collisions, but there is no internal representation of goals

•  “adopting the intentional stance”

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 24	

Example: Boids

•  a boid is a simple agent that navigates according to its local perception
of its environment, the simulated physics of the environment and a set
of simple behavioural rules:

– collision avoidance: avoid collisions with nearby boids (& static
obstacles)

– velocity matching: attempt to match velocity with nearby boids

– flock centring: attempt to stay close to nearby boids

•  each boid also has a ‘migratory urge’, a global direction or position
towards which the boids will fly

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 25	

Behavioural rules

•  collision avoidance uses only the
current position of other boids–
achieves minimum separation
between boids

•  velocity matching uses only the
current velocity of other boids–
maintains minimum separation
between boids

•  flock centring has little effect on
boids in the middle of the flock–
greatest effect on boids at the edge
of the flock

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 26	

The boid’s environment

•  physics of the environment implements a simple model of a creature
with a finite amount of available energy

•  maximum acceleration of a boid is bounded

•  simple model of viscous speed damping is used to limit a boid’s
maximum speed

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 27	

Boid motion

•  each behaviour (collision avoidance, velocity matching and flock
centring) produces an acceleration in the form of a 3D vector

•  in determining the acceleration for each behaviour, the contribution of
each boid to the behaviour of a given boid is inversely proportional to
the square of the distance

•  maximum acceleration produced by any single behaviour is limited to
the boid’s maximum acceleration

•  basic behaviours are combined to give the final motion for each boid

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 28	

Vector combination

•  behaviours are prioritised, with collision avoidance being more important
than velocity matching which in turn is more important than flock
centring

•  vectors are combined by adding them up until the boid’s maximum
acceleration threshold is reached

•  if the threshold would be exceeded, remaining vector(s) are scaled to stay
within the acceleration threshold

•  gives priority to the most important behaviours, e.g., will suppress flock
centring and velocity matching if a collision is imminent

•  mixture of combined and prioritised action selection

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 29	

Boids summary

Boids illustrate how simple reactive architectures can produce complex
emergent behaviour:

•  “The aggregate motion we intuitively recognise as ‘flocking’ depends
on a limited, localised view of the world.”

•  “The isolated behaviour of a flock tends to reach a steady state and
becomes rather sterile. … Environmental obstacles and the boid’s
attempt to navigate around them increase the apparent complexity of
the behaviour of the flock.”

– (Reynolds 1987)

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 30	

Advantages of simple reactive architectures

•  simple architectures can produce complex behaviour

•  no representations of the environment or complex problem solving

•  can use dedicated, parallel hardware

•  fast (often real-time) response to changes in the environment

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 31	

Disadvantages of simple reactive architectures

•  fixed response to a given situation

•  all responses must be defined in advance

•  can’t cope with novel situations for which they don’t have a
predefined behaviour

•  can’t solve some problems at all

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 32	

The next lecture

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 33	

Reactive Architectures II

Suggested reading:

•  Braitenberg (1984), Vehicles: Experiments in Synthetic Psychology,
MIT Press.

Behavioural rules

•  collision avoidance uses only the current position of other boids

– achieves minimum separation between boids

•  velocity matching uses only the current velocity of other boids

– maintains minimum separation between boids

•  flock centring has little effect on boids in the middle of the flock

– greatest effect on boids at the edge of the flock

© Brian Logan 2013	
 G54DIA Lecture 3: Reactive Architectures I	
 34	

