
G54DIA: 
Designing Intelligent Agents 

 
Lecture 4: Reactive Architectures II 

Natasha Alechina 
School of Computer Science 

nza@cs.nott.ac.uk 



Outline of this lecture 

•  limitations of simple reactive systems 

•  more complex reactive systems  

– with state 

– with multiple components 

•  example: ‘Avoid Past’ behaviour 

•  example: Subsumption architecture 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 2	




Simple reactive architectures 

 

 
•  actions are directly triggered by percepts 

– no representations of the environment 

– predefined, fixed response to a situation 

– fast response to changes in the environment  

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 3	


Agent"
percept action 



Limitations of a simple reactive agent 

•  its knowledge of the world is limited by the range of its sensors 

•  it’s unable to count 

•  it’s unable to recover from actions which fail silently 

•  and many others ... 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 4	




Modelling reactive behaviours 

 
 
 
 

 
•  we can model reactive behaviours as condition-action rules 

•  if the condition matches the agent’s precepts, it triggers an action 
 

if percept then  action 

•  a simple reactive agent maintains no internal representation of the 
state of the world, whether the rule has been fired before etc. 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 5	


Agent"
percept action 



Reactive architectures with state 

•  some rules match against an internal representation of aspects of the 
environment  

•  representations can be built using simple percept-driven rules (internal 
actions) which record simple ‘beliefs’ about the state of the world 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 6	


Agent"
percept(s) action 1011 



Reactive architectures with state 

•  from the point of view of expressive power, this adds nothing 

•  we have simply taken a condition-action rule which matched against a 
percept and generated an action and split it in two, with a mediating 
internal representation 

•  needs extra machinery to store the state 

•  requires at least two computation steps to choose an action rather than 
one 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 7	




Action selection function 

•  the action selection function for a simple reactive agent looks like 

•  a reactive agent with state (finite-state machine) can respond to regular 
sequences of events 

•  we can add more complex state data structures to increase the capabilities 
of the agent, e.g.,  

– add a stack (pushdown automata) to respond to context-free sequences 

– add a random-access array to get a Turing machine, etc. 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 8	


€ 

selectAction :  Event ×  State→  Action ×  State



Agent"

Actions which modify the internal state 

•  we can extend this to rules 

– whose conditions match against the agent’s internal state; and  

– whose actions modify the agent’s internal state 

•  again, this appears to make things worse—requires even more space 
and more steps to choose an action 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 9	


percept(s) action 1011 0010 



Importance of representations 

•  notion of a rule which only responds to and generates internal changes 
in the agent is a key step  

•  forms the basis of all derived representations, and of representations 
which refer to other aspects of the agent’s internal state 

•  e.g., allows the agent to respond only to changes in the environment, 
ignoring features that are constant  

•  without some representation of the previous state, we can’t say what is 
novel in the current state 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 10	




Detecting change 

•  to detect and represent changes in the environment we need rules  

– whose conditions match against representations of the current and 
previous precepts 

– whose action is to remember (copy) the state representing the current 
percept for use at the next cycle 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 11	


Agent"
percept(s) 

action 
1011 

1001 

0010 



Detecting change 

•  to detect and represent changes in the environment we need rules  

– whose conditions match against representations of the current and 
previous precepts 

– whose action is to remember (copy) the state representing the current 
percept for use at the next cycle 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 12	


Agent"
percept(s) 

action 
percept 

memory 

change 



Internal representations 

•  require more space and incur the cost of maintaining the 
representation 

•  allow the choice of actions based on sequences of states, e.g.:  

– to react to change 

– to react to lack of change 

•  given such internal behaviours, much more complex external 
behaviours are possible 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 13	




Advantages of state 

•  agent’s knowledge of the world is no longer limited by the range of its 
sensors–it can remember parts of the environment it can’t currently 
sense  

•  agent is able to count–allowing it to execute behaviours that require 
some action to be iterated a given number of times 

•  agent is able to recover from actions which fail silently–it can 
remember which actions it has tried before or how many times an 
action has been tried, and try something else if the action doesn’t have 
the desired effect 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 14	




Agent"

Combined actions 

•  distinct actions triggered by different percepts are combined into a 
single composite action 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 15	


actioni 

percept(s)a 

percept(s)b 

percept(s)c 



Problems with combining actions 

•  action selection based on combining actions is prone to a number of 
problems: 

– local minima: e.g., Braitenberg vehicles get suck in a corner of a 
box, unable to turn around; and 

– cyclic behaviour: e.g., Braitenberg vehicles get trapped orbiting an 
obstacle 

•  one way to solve these problems is simply to inject noise or 
randomness into the agent’s behaviours 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 16	




Local minima 

•  consider a simple ‘boids-like’ agent which chooses an action by 
combining 

– a vector towards the goal 

– a vector away from an obstacle (if any) 

•  if there is an obstacle on the way to the goal, the agent can get stuck 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 17	




•  vectors sum to zero and the agent’s combined action is nil 

Example: local minima 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 18	


Goal 
Agent 



•  adding a (small) random vector can take the agent past the obstacle, 
“unsticking” it 

Example: local minima 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 19	


Agent 
Goal 



•  adding a (small) random vector can take the agent past the obstacle, 
“unsticking” it 

Example: local minima 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 20	


Agent 

Goal 



•  however for some obstacles, this doesn’t work 

Local minima example 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 21	


Goal Agent 



Example: the ‘Avoid Past’ behaviour 

•  another solution involves the use of memory 

•  Avoid Past behaviour uses a short term representation of where the 
agent has been recently 

•  repulsive forces are generated from recently visited areas 

•  the output of the Avoid Past behaviour is a vector of the same form as 
the vectors produced by the other behaviours (e.g., move to goal, 
avoid obstacles etc.) and is combined in the same way 

•  memory used by Avoid Past is short term—the agent can return to 
previously visited locations when the memory decays 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 22	




Example: the Avoid Past behaviour 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 23	


Goal 
Agent 



Example: the Avoid Past behaviour 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 24	


Goal Agent 



Example: the Avoid Past behaviour 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 25	


Goal Agent 



Example: Subsumption architecture 

•  collection of behaviours specified 
as a set of rules in Behavior 
Language  

•  behaviours compile to an 
Augmented Finite State Machine 
(AFSM) 

•  each AFSM performs an action 
and is responsible for its own 
perception of the world 

•  the output of one behaviour can 
form the input to another 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 26	




Behavioural module 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 27	


Behavioural	

Module	


inputs	
 outputs	

I	


S	


Inhibitor	


Suppressor	
Reset	




Subsumption architecture layers 

•  behaviours are organised into layers, each of which is responsible for 
independently achieving a goal 

•  complex actions subsume simpler behaviours lower in the hierarchy 

•  output of lower layers can be read by higher layers 

•  lower layers have no knowledge of higher layers 

•  layers operate concurrently and asynchronously 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 28	




Subsumption architecture layers 

•  higher layers control lower layers using: 

– inhibition: prevents transmission 

– suppression: replaces a message with a suppressing message 

– reset: restores behaviour to its original state 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 29	




Subsumption example: Foraging 1 

•  foraging task consists of a 
robot moving away from a 
home base looking for attractor 
objects 

•  when it detects an object, the 
robot moves towards it, picks it 
up and returns to home base 

•  this sequence of actions is 
repeated until it has returned all 
the objects in the environment 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 30	




Subsumption example: Foraging 2 

Mataric (1993) implemented a simple robotic foraging system using 4 
behaviours: 
 

•  wandering: move in a random direction for some time 

•  avoiding: 
– turn to the [right | left] if the obstacle is on the [left | right], then go 
– after three attempts, back up and turn 
– if there is an obstacle on both sides, randomly turn and back up 

•  pickup: turn towards the object and go forward; if at the object, close 
gripper 

•  homing: turn towards home and go forward, otherwise, if at home, 
stop 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 31	




Subsumption example: Foraging 3 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 32	


Homing	


Pickup	


Avoiding	


Wander	


S	


S	


S	




Subsumption example: Foraging 4 

•  behaviours are prioritised and the robot is executing only one 
behaviour at any one time 

•  when the robot senses an obstacle, wandering is suppressed, so that 
the avoidance behaviour can get the robot away from the obstacle 

•  when the robot senses the target object, collision avoidance is 
suppressed—otherwise the pickup behaviour couldn’t get the robot 
close enough to the object to pick it up 

•  when the object is grabbed, homing then suppresses pickup (allowing 
the robot to ignore the potential distraction of of other objects it might 
encounter on its way back to base) 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 33	




Advantages of reactive architectures 

•  a reactive architecture with state can produce any kind of behaviour 
 
•  if the state can be partitioned (e.g., subsumption architecture)  

– development is easier 

– can still use dedicated, parallel hardware  

– fast (real-time) response to changes in the environment 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 34	




Disadvantages of reactive architectures 

•  no complex problem solving 

•  even with the addition of state and multiple components, reactive 
architectures can’t consider alternative plans/solutions to a problem 
(states are veridical) 

•  every solution to every problem must be coded in advance, either by 
the designer of the system, or by evolution 

•  can’t cope with novel situations for which they don’t have a 
predefined behaviour 

•  agent programs for complex problems can be very large 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 35	




The next lecture 

© Brian Logan 2014	
 G54DIA Lecture 4: Reactive Architectures II	
 36	


	

	


Deliberative Architectures I	

	


Suggested reading:	

	


•  Russell & Norvig (2003), chapter 11	


•  Wooldridge (2002), chapter 4	

	



