
G54DIA:
Designing Intelligent Agents

Lecture 5: Deliberative Architectures

Natasha Alechina
School of Computer Science

nza@cs.nott.ac.uk

Outline of this lecture

•  deliberative architectures

•  the role of representation

•  advantages of deliberation

•  examples

– travelling salesman problem

–  Shakey the robot

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 2	

Agent architecture

•  the architecture defines a (real or virtual) machine which runs the
agent program

•  defines the atomic operations of the agent program

•  determines which operations happen automatically, without the agent

program having to do anything

•  the atomic operations and automatic operations determine whether an
architecture is reactive or deliberative

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 3	

Limitations of reactive architectures

•  there are many things agents with reactive architectures can’t do:

– they can’t represent or reason about hypothetical objects and
times;

– they don’t do well in domains where plausible actions can’t be
ignored or undone if they prove to be unwise;

– it is difficult for purely reactive agents to organise their own
activities over time or to coordinate their behaviour with that of
other agents in a non-trivial way

•  it’s difficult to get intelligent behaviour from a purely reactive agent

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 4	

Deliberation

•  deliberation is the explicit consideration of alternative courses of
action

•  deliberation involves generating alternatives and choosing an
alternative

•  an agent can deliberate about:

– means: how to achieve a goal (this lecture)

– ends: whether to achieve (intend) a goal (next lecture)

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 5	

Examples: deliberating about means

•  problem solving (search)

•  planning

•  scheduling

•  theorem proving

•  constraint satisfaction

•  etc

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 6	

Agent"

Deliberative architecture

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 7	

goal action

alternatives

se
le

ct
io

n

percept(s) action

Deliberative architectures (means)

•  in a deliberative architecture, percepts (or communication) give rise to
goals—representations of a state to be achieved 	

•  the agent deliberates about how to achieve the goal	

– deliberation involves (usually systematic) exploration of
alternative courses of action	

– a deliberative architecture typically includes automatic generation
and comparison of alternatives

•  result of deliberation is a representation of of the action(s) to be
performed	

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 8	

The role of representations

•  deliberation involves the manipulation of a model of the world and
possible courses of action, rather than the world itself

•  requires the ability to represent actions and derive the consequences of
actions without actually performing them, e.g.:

– by remembering their effects in previous, similar situations

– by reference to a causal model of the world

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 9	

Counterfactual representations

•  to represent desired states and the consequences of actions:

– some states of the agent must be counterfactual in the sense of
referring to hypothetical future states (goals) or as yet unexecuted
actions (plans)

– some of the basic operations of the architecture should generate
such counterfactual states

– such states must be influential in the choice of actions

•  to represent hypothetical situations, a deliberative agent requires
representations with compositional semantics

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 10	

Advantages of deliberation

•  useful when the penalty for incorrect actions is high, e.g., when the
environment is hazardous

•  allows us to code a general procedure for finding a solution to a class
of problems

– may be better than reactive systems at coping with novel problems

– we may be able to get a correct or even an optimal answer, e.g.,
decision theoretic approaches

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 11	

Example: Traveling Salesman Problem

•  given a set of cities and routes between them, find the shortest tour
that visits each city exactly once

•  often formulated of finding the shortest Hamiltonian cycle in a
completely connected undirected graph

•  however there are many variants, e.g., graph may be incomplete or
directed, non-metric distances, etc.

•  finding an optimal solution is NP-hard

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 12	

TSP algorithms

•  many TSP algorithms use iterative refinement, i.e., they require the
representation of at least two alternative tours:

– the current best tour

– the candidate tour (often a modification of the current best tour)

•  iterative algorithms typically stop when no modification of the current
best tour has lower cost or when there has been no improvement for n
iterations

•  agent then executes the steps in the tour

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 13	

More complex deliberation

•  iterative improvement TSP algorithms implement a very simple form
of deliberation

•  they are specific to a particular kind of problem, i.e., TSP problems
(though many interesting real world problems can be formulated as a
TSP problems)

•  viewed as search problems, their representational requirements and the
number of operators are minimal

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 14	

Shakey the robot (1966–1972)
•  Shakey was the first mobile robot

to reason about its actions

•  multiple sensors (TV camera, a
triangulating range finder, and
bump sensors)

•  connected to DEC PDP-10 and
PDP-15 computers via radio and
video links

•  programs for perception, world-
modeling, and acting (simple
motion, turning, and route
planning)

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 15	

Shakey’s impelmentation

•  programmed in Fortran and Lisp

•  problem solving (planning) was implemented using STRIPS (as of
1969)

•  ran on a “large” PDP-10 with 192K 36-bit words of memory

•  Shakey’s programs occupied “over 300,000 36-bit words” (i.e., about

1.35MB)

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 16	

Shakey’s problem solving

•  given the command (in English) “push the block off the platform”

•  Shakey looks around, identifies a platform with a block on it and
locates a ramp

•  Shakey

– pushes the ramp over to the platform

– rolls up the ramp onto the platform

– pushes the block off the platform

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 17	

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 18	

Planning is a hard problem
•  the agent’s knowledge of the initial state of the world is often

incomplete or mistaken

•  the world is continually changing and continues to change while the
agent is planning

•  actions don’t always have the intended effect—actions can fail or just
have unpredictable outcomes

•  the agent may make errors executing the plan

•  the time available to find a solution may be limited

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	

Simplifying assumptions

•  the agent has perfect knowledge of the world, including the location
and properties of all the objects in the world

•  the world is static—i.e., it doesn’t change unless the agent changes it

•  the world is deterministic—we know in advance the effect of
performing an action in the world and each action has a single
outcome

•  plan execution is error-free

•  it doesn’t matter how long it takes the agent to find a plan

19	

Classical planning

•  if we make these assumptions we get classical planning

– production of a complete, totally ordered set of actions, which,
when executed in a given initial situation, will achieve a goal

•  resulting sequence of actions will typically only work if the
simplifying assumptions hold

•  implies some way of coping with inaccurate world models, non-
deterministic actions, plan execution errors, etc. (later lecture)

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 20	

Shakey’s world model

•  Shakey planned using the STRIPS planner

•  STRIPS used information stored in a symbolic world model to
determine what actions to take to achieve the robot’s goal

•  Shakey had an initial world model containing information about the
positions of walls and doors in the environment and (possibly partial)
information about other objects

•  Shakey’s percepts provided the information to update the
representations in the world model

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 21	

STRIPS

•  states are represented as conjunctions of (function-free) ground literals

•  goals are represented by conjunctions of literals, possibly containing
existentially quantified variables

•  actions are represented by operators which specify

–  the name of the action

–  the precondition—a conjunction of positive literals specifying what
must be true for the action to be applicable

–  the postcondition—a conjunction of literals specifying how the
situation changes when the operator is applied

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 22	

STRIPS continued

•  for example, an operator which stacks one block on top of another in
the blocks world could be specified as

[Clear(x), Clear(y)] STACK(x, y) [On(x, y), ¬Clear(y)]

•  the precondition implicitly refers to the situation, s, immediately
before the action, and the postcondition implicitly refers to the
situation, s′, which results from performing the action

•  in s′, all the positive literals in the postcondition hold, as do all the
literals that held at s, except for those that are negative literals in the
postcondition

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 23	

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 24	

Regression planning
•  one way to solve STRIPS problems is to search backwards from the goal in

world (situation) space

•  operator preconditions become subgoals—we stop when the operator
preconditions are satisfied in the current state

•  resulting plan is a series of instantiated operators which, if applied in the

initial state, result in the goal state

•  searching backwards often reduces the branching factor

•  in typical problems the goal state has a small number of conjuncts, each of
which is made true by a small number of operators, while there are many
operators that can be applied in the intial state

The next lecture

Further Deliberation

Suggested reading:

•  Russell & Norvig (2003), chapter 12 (chapter 13 of the 1st edition)

•  Wooldridge (2002), chapter 4.

© Brian Logan 2013	
 G54DIA Lecture 5: Deliberative Architectures I	
 25	

