
G54DIA:

Designing Intelligent Agents

Lectures 10-11: Multi-Agent Systems I

Brian Logan

School of Computer Science

bsl@cs.nott.ac.uk

Outline of this lecture

• multi-agent systems

• designing multi-agent systems

• example: explorer robots on Mars

• task allocation

• example: contract net protocol

• example: Witness Narrator Agents

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 2

Defining “multi-agent system”

• like the notion of an ‘agent’, a ‘multi-agent system’ is an analysis tool

• it is pointless trying to pin down which systems are really multi-agent

systems

• the key point is whether we gain by looking at a system as a multi-

agent system

• many distributed systems can be viewed as multi-agent systems, but it

may not useful to do so

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 3

Multi-agent systems

• a multi-agent system is a system in which several agents share a

common task environment and cooperate at least part of the time

• the agents can have any of the architectures we have seen so far, e.g.,

reactive or deliberative or hybrid

• all the agents may have the same architecture or they may have

different architectures

• the environment may not appear the same to the agents if they are

different, e.g., if they have different sensors and actions

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 4

Interactions in multi-agent systems

• if the agents are not aware of or simply ignore each other, there isn’t

very much interesting to say

• if they always compete with each other, it is more interesting, but the

agents don’t form a system in anything other than the ecological sense

(e.g., artificial life)

• for a multi-agent system to be possible the agents must cooperate

about some things – there must be some overlap in their task

environments

• e.g., even if the agents compete for resources, they must cooperate

about how the resources are to be allocated

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 5

Competition & cooperation in MAS

• the balance between competition and cooperation depends on the

degree to which the goals of the agents overlap

• e.g., agents representing different organisations in an electronic market

will typically have competing goals (to maximise the profit of their

organisation)

• however they must cooperate to ensure that the market (e.g., auction)

works fairly

• mechanism design is concerned with designing interaction protocols in

which the agents have no incentive to cheat

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 6

Co-operation in multi-agent systems

• agents are self-interested and do not share a common goal

– e.g., they are designed to represent the interests of different
individuals or organisations

– agents co-operate because it helps them achieve their own goals

• agents implicitly or explicitly share a common goal

– benevolently work to achieve the overall objectives of the system,
even when these conflict with the agent’s own goals

– e.g., when the agents are ‘owned’ by the same organisation or
individual

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 7

Shared goals

• we will focus on the special case in which all the agents in the MAS
cooperate to achieve one or more system or organisational goals

• usually the aim in MAS is that agents co-operate to perform some task
that a single agent can’t do on its own

– because a single agent doesn’t have all the capabilities or knowledge

required to perform the task

– because a single agent would be too slow

• note that there may still be elements of competition, e.g., if the agents
compete for the organisation’s resources

• mechanisms are still required to ensure that resources and tasks are
allocated appropriately

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 8

Applications of multi-agent systems

• distributed problem solving

– each agent has only restricted capabilities or knowledge in relation

to the (shared) problem to be solved

– e.g., scheduling meetings, design of industrial products

• solving distributed problems

– the agents have similar capabilities but the problem is distributed

– e.g., controlling a communications or energy distribution network

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 9

Designing multi-agent systems

• more complex than designing a single agent

• the types of agents to use: should they be identical or specialised? how

many agents should there be of each type (redundancy)?

• what architecture(s) should they have?

• how the agents communicate with each other, e.g., by signalling or

sending messages

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 10

Designing multi-agent systems 2

• what type of organisational structure should be used:

– predefined: relationships are determined in advance by the designer of
the system

– emergent: the structure is entirely the result of the interactions
between the agents

• how should the organisational structure be implemented:

– should control be hierarchical or distributed?

– if distributed, what mechanisms are there for ensuring co-operation
between agents–e.g., sharing tasks and resources, co-ordination of
actions, arbitration and negotiation

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 11

Specialisation & redundancy

• the degree of specialisation indicates the number of actions an agent

can perform in relation to the number of actions necessary to perform

the task

• the degree of redundancy indicates the proportion of agents capable of

performing a given action

• for simplicity, we assume that all (basic) actions can be carried out by

a single agent

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 12

Specialisation & redundancy 2

• is it better to to have very specialised agents, each of which can

perform only a few actions?

• or is it better to have totipotent agents which can perform all the

actions and only the number matters?

• less specialised agents will give a more flexible and reliable system

• but will be more costly and may be less efficient, since more

negotiation is required to determine which agent does which task

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 13

Specialisation vs redundancy

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 14

no redundancy

high redundacy

totipotent agents specialised agents

R
ed

u
n

d
a
n
cy

Specialisation

Redundant generalist

organisation

Non-redundant generalist

organisation

Non- redundant specialist

organisation

Redundant specialist

organisation

Specialisation vs redundancy

• non-redundant generalist organisation: each agent can perform many

actions and each action is performed by only a few agents

• redundant specialist organisation: each agent can perform only a few

actions and each action is carried out by many agents

• redundant generalist organisation: each agent can perform many

actions and each action can be performed by many agents

• non-redundant specialist organisation: each agent can perform only a

few actions and each action is performed by only a few agents

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 15

© Brian Logan 2013 16

Specialisation vs redundancy 2

• non-redundant generalist organisation: in the limit, this reduces

to a single agent which can perform all the actions

• redundant specialist organisation: in the limit every agent

performs the same single action

• redundant generalist organisation: in the limit, every agent can

perform all actions (so the problem is how to distribute the actions

among the agents)

• non-redundant specialist organisation: in the limit, each agent can

perform only one action and each action is performed by only one

agent

G54DIA Lecture 10: Multi-Agent Systems I 16

Control

• control structure determines the way in which agents can cause other

agents to perform certain tasks:

– hierarchical structures: control is organised around a branching

tree, with agents nearer the leaves subordinate to those nearer the

root of the tree

– distributed structures: any agent can ask any other agent to carry

out a task which it may or may not agree to perform

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 17

Example: explorer robots on Mars

• from a fixed base several mobile robots explore an unknown

environment in order to find and recover ore and transport it back to

the base

• the agents must perform three actions to gather ore:

– find some ore

– drill down to bring it to the surface

– transport the ore back to base

• each action can be accomplished independently of the others by a

single agent

• robots can be rendered inoperative for various reasons, e.g., being hit

by a meteorite, breakdown etc.

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 18

Designing the robots

To solve the problem we have to determine:

• the types of robots to use: should they be identical or specialised?

• the architecture(s) of the agents: should all the agents have the same
architecture or should they have different architectures? should they be
reactive or deliberative or hybrid?

• the kind of communication to use: signals or messages? (this interacts
with the architecture(s) of the agents)

• the co-operation mechanisms and interaction protocols to use: what
happens when two robots discover a deposit ofore at the same time?

• the organisation of the agents: should they work as a group or on their
own? are the teams fixed or dynamic? can agents ask for assistance?

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 19

Solution 1

• hierarchical, predefined organisational structure

• each agent performs a single action (detecting, drilling and

transporting), and several agents can perform the same action

• agents are organised into fixed teams with a hierarchical subordination

structure

• each detector robot commands a (fixed) set of driller robots and each

driller commands a (fixed) set of transporter robots

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 20

Solution 1 analysis

• not very adaptable: if a detector agent finds a very large ore deposit, it

can’t do anything useful

• central point of failure: if an essential agent breaks down, the whole

team is lost

• the performance is low: if a detector takes a long time to find ore, the

drillers and transporters in the team remain unused

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 21

Solution 2

• egalitarian, predefined organisational structure:

• robots can be totipotent or specialised

• one way to do this is the contract net protocol:

– an agent with a task to perform sends a request for bids

– agents which are interested respond with bids

– the originating agent decides which bid(s) to accept

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 22

Solution 2 analysis

• more flexible than solution 1

• each agent can ask the others for help as the need arises–e.g. drillers

can ask detectors to find some ore

• but how do totipotent agents decide which of the 3 actions to perform

at each timestep?

• maybe better if the agents are more specialised, since then the agents

don’t have to worry about which actions to perform

• but still: which requests for help do specialised agents respond to?

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 23

Solution 3

• egalitarian, emergent organisational structure:

• each robot can detect, drill and gather ore on its own

• the system has a great deal of redundancy, but can be inefficient

• to improve performance, the robots can start to specialise while they

are working

• e.g., those who have transported ore become more likely to transport

ore in the future

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 24

Solution 3 analysis

• one problem with a totipotent MAS is to make the agents capable of

cooperating so that if one finds ore, the others can benefit from this

discovery

• would it be more efficient if the ‘correct’ number of robots adopt each

role, so that they no longer need to deliberate on which action to

perform next?

• many ant species have distinct worker roles optimised by natural

selection, presumably to increase colony efficiency

– large workers specialise in defence, and small ones in cutting fruit

 G54DIA Lecture 10: Multi-Agent Systems I 25

Task sharing

• task sharing is the problem of determining how tasks are allocated to

individual agents in a multi-agent system

• for homogeneous (e.g., totipotent) agents this is straightforward–only

concern is load balancing

• if the agents are heterogeneous (have differing capabilities) and/or are

autonomous (can refuse tasks), then task sharing involves reaching

agreements between agents

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 26

Contract net protocol

• contract net protocol is a way of achieving efficient co-operation
through task sharing in networks of (possibly heterogeneous,
autonomous) agents

– task announcement: an agent which generates (or receives) a task
broadcasts a description of the task to some or all of the agents

– bid response: agents respond to the task announcement with a bid

– task allocation: the agent which announced the task allocates it to
one or more of the bidding agents

– expediting: the agent to which the task was allocated carries it out

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 27

Task announcement

• task manager sends a task announcement to some or all agents

• task announcement contains information about the task to be
performed:

– eligibility specification: the criteria an agent must meet in order to
be eligible to submit a bid

– task abstraction: brief description of the task to allow potential
bidders to evaluate level of interest

– bid specification: description of the expected form of a bid for the
announced task

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 28

Bidding

• on receipt of a task announcement, an agent determines if it is eligible

for the task based on:

– the task’s eligibility specification

– the agent’s hardware and software resources

– its current commitments

• eligible agents send a bid to the task manager containing the

information in the bid specification, e.g., when they will be able to

complete the task, how much it will cost, etc.

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 29

Task allocation

• bids are stored by the task manager until a deadline is reached

• if no (acceptable) bids are received by the deadline, task is re-

announced

• otherwise the manager then awards the task to one or more bidders

• bidders who have been awarded the task confirm that they are still

able to undertake it (situation may have changed between bid and

award)

• otherwise part or all of the task is re-announced

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 30

Task processing

• award messages contain a complete specification of the task to be

executed

• successful bidder(s) (contractors) must attempt to expedite the task

• this may result in the generation of new sub-tasks which the bidder

then manages ...

• when the task is complete, contractors send their manager a report

message containing the result of the task

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 31

Applications

• contract net has become one of the most popular frameworks for task

sharing in multi-agent systems (e.g., FIPA-OS)

– originally used to allocate tasks over a distribute network of

sensors (benevolent agents)

– later extended to self-interested agents in electronic markets

• many variants—e.g., agents respond with offers of tasks to swap for

the announced task

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 32

Handling inconsistency

• a group of agents may have inconsistencies in their beliefs, goals or

intentions (Wooldridge)

• inconsistent beliefs arise because agents have different views of the

world

– may be due to sensor faults or noise or just because they can’t see

everything

• inconsistent goals may arise because agents are built by different

people with different objectives

G54DIA Lecture 10: Multi-Agent Systems I 33

Handling inconsistency 2

• three ways to handle inconsistency (Durfee at al.)

• do not allow it

– in the contract net, perhaps the only view that matters is that of

the task manager agent

• resolve inconsistency

– agents argue about the inconsistent information/goals until the

inconsistency goes away

• build systems that degrade gracefully in the face of inconsistency

G54DIA Lecture 10: Multi-Agent Systems I 34

Coordination

• perhaps the defining problem in cooperative working is that of

coordination (Wooldridge)

• i.e., managing inter-dependencies between the activities of agents

• we both want to leave the room through the same door: what do we

do to ensure we can both get through the door?

– activities need to be coordinated because there is only one door

• I intend to submit a request for annual-leave, but in order to do this,

I need a signature from my manager

– my activity depends upon my manager’s

G54DIA Lecture 10: Multi-Agent Systems I 35

Coordination 2

• interactions between activities could he either positive or negative

(Von Martial)

• negative interactions should be recognised and avoided, but positive

ones may yield some benefit if actions/plans are combined

• positive coordination may be requested: I explicitly ask you for help

with my activities

• or it may be non-requested: it so happens that by working together

we can achieve a solution that is better for at least one of us, without

making the other any worse off

G54DIA Lecture 10: Multi-Agent Systems I 36

Coordination 3

• there are three types of non-requested (implicit) coordination

• action equality: we both plan to do something, and by recognizing

this one of us can be saved the effort

• consequence: what I plan to do will have the side-effect of achieving

something you want to do

• favor: what I plan to do will make it easier for you to do what you

want to do

G54DIA Lecture 10: Multi-Agent Systems I 37

© Neil Madden G54DIA Lecture 10: Multi-Agent Systems I 39

Example: Witness-narrator framework

• agent-based approach

• agents embodied in the environment

generate narrative from observations

of participant’s actions

• narrative is published to external

audiences, e.g., community websites,

SMS messages

• or fed back into the environment in

real-time to embellish the ongoing

experience

© Neil Madden G54DIA Lecture 10: Multi-Agent Systems I 40

Narrative production

• participants are the subject of the narrative—interact with witness narrator agents
in the environment

• external audience are not (currently) embodied in the world but read accounts of
the action—interact with non-embodied commentator agents

• both participants and audience make requests for information about past, present or
future events

participants

audience

© Neil Madden G54DIA Lecture 10: Multi-Agent Systems I 41

Example output

Dragon slain in Etum Castle District

 An ancient dragon was slain in Etum Castle District within the last

hour. Lance Bannon, a powerful mage, delivered the fatal blow by casting

a fireball at the dragon.

 It all started when Jim Fingers, a young rogue, attacked the dragon

with a sword. The ancient dragon slashed Jim Fingers with its talons.

Lance Bannon, a powerful mage, cast invisibility. Oliver Ranger, a

fighter, stabbed the dragon with a dagger. The dragon cast a fireball at

Jim Fingers. Lance Bannon cast a fireball at the dragon. Finally, the

ancient dragon died.

© Neil Madden G54DIA Lecture 10: Multi-Agent Systems I 42

Embodiment & control

• witness narrator agents are embodied in the environment and have

(approximately) the same capabilities as a human participant

• participants can determine when they are being observed and the

information an agent can obtain given its position

• can also try to avoid agents or modify their behaviour when they are

around

• allows participants (some) control over what gets reported

• important when reporting events to an external audience

© Neil Madden G54DIA Lecture 10: Multi-Agent Systems I 43

Embodiment as interface

• provides an interface to the narrative system which is seamlessly
integrated with the virtual environment

• participants interact with WNAs in the same way as with other NPCs
(via menus & text):

– ask for information about current events elsewhere in the
environment

– ask an agent accompany them as they progress through the game
to share reports of their activities with others

– ask an agent to go away

© Neil Madden G54DIA Lecture 10: Multi-Agent Systems I 44

Embodiment & PoV

• WNAs embodiment (first-person view of events) explains the ultimate

source of the narrative

• makes explicit the limitations of what is knowable about the actions of

other participants

• view of events is limited to actions of players and speculation about

their thoughts, feelings or motives

• agents are ‘witnesses’ rather than protagonists—do not actively play

a part in the activities of the game beyond their presence and the

narration they provide

© Neil Madden G54DIA Lecture 10: Multi-Agent Systems I 45

User requests

• information requests give rise to focus goals which direct the activities
of the witness-narrator agents:

– partial description of events (e.g., what are my friends doing now)

– area of the environment and the time(s) at which the events occur
(e.g., what happened at this location in the past)

– interval specifying how frequently to generate reports

• focus goals determine which events observed by the agents are
considered ‘interesting’

© Neil Madden G54DIA Lecture 10: Multi-Agent Systems I 46

Autonomous goal generation

• witness-narrator agents can generate focus goals autonomously in

response to observed events

– always refer to current or future events

– always specialisations of existing focus goals

• WNAs have a priori high-level goals which are used as a basis for

autonomous goal generation, e.g., death of a player

© Neil Madden G54DIA Lecture 10: Multi-Agent Systems I 49

Agent architecture

Witness-Narrator Agent Commentator Agent

© Neil Madden G54DIA Lecture 10: Multi-Agent Systems I 53

Agent coordination

• a focus goal specifying past or current events which cannot be

satisfied by the agent that generated it is broadcast to all WNAs, e.g.

– “what happened yesterday”

– “what are my friends doing right now”

• reports matching the focus goal are forwarded to the originating agent

© Neil Madden G54DIA Lecture 10: Multi-Agent Systems I 54

Team formation

• focus goals which specify future events result in the formation of a
team of agents coordinated by the agent which generated the goal

• coordinator broadcasts a call for participation which includes the focus
goal

• agents which can attend to a focus goal at any point during the time it
is active will offer to join the team, stating when they are available

• coordinator assigns roles to team members based on a set of ideal role
requirements, so as to ensure the maximum coverage of the goal

• team formation is on a best-effort basis

© Neil Madden G54DIA Lecture 10: Multi-Agent Systems I 55

Implementation

• agents are implemented in AgentSpeak (Jason)—each module is a

collection of Jason plans and rules

• event ontologies are developed in OWL-DL using Protégé and

compiled into Jason rules

• coordination layer builds on Jason’s contract net implementation

• also draws on a number of other Jason extensions (multiagent

communication, persistent database etc)

• NWN gameserver plugin for sensing

The next lecture

Multi-Agent Systems II

Suggested reading:

• Ferber (1999), chapter 1

© Brian Logan 2014 G54DIA Lecture 10: Multi-Agent Systems I 56

