
1

Abstract Data Types

Previous lectures: algorithms and their efficiency
analysis.

Coming lectures: data structures

In this lecture:

• Abstract data types

• ADTs as a design tool

• Examples: integer ADT, List ADT

Data Types

• All programming languages provide basic data
types.

• These have core operations (or methods):

• For example, int has arithmetic operations +,
-, /, * and comparisons <,>,==, etc.

• Also provide composite (structured) data types
(arrays in Java, lists in Haskell).

Abstract Data Types

• Data type = data + methods

• Abstract data type:
• Logical domain for data

• Collection of core operations / methods

• ADTs abstract from implementation details, e.g.:
• How data domain is built from more basic data types

• How the core methods actually work

• Efficiency (complexity) of algorithms for core
methods

• Correctness of algorithms

ADTs as Design Tool

• Useful aid in software design process.

• Consider what kind of data you need to solve the
problem.

• Consider which operations do you need to
perform with the data (which arguments the
operations take, what is their return type).

• Essentially, designing a class interface (which
methods the class should have).

• (The idea of ADTs predates object oriented
programming and is more general.)

Principle of Abstraction

When solving a problem, separate

• what is to be done, and

• how it is to be done

Integer ADT

Logical domain: integers (whole numbers greater or
equal to 0).

Methods:
• Integer add(Integer x, Integer y)

Postcondition: returns the sum of x and y

• Integer multiply(Integer x,Integer y)
Postcondition: returns x times y

• boolean equals(Integer x, Integer y)
Postcondition: returns true of x equal to y

and so on.We don't know how this is going to be
implemented - as a 16-bit or a 32-bit number etc.

2

List ADT (Informal)

Data (what things are lists?): linear collections of
items.

Methods (what can one do with a list?):
• insert an element

• delete an element

• access the head of the list

• move to the next item from where you are

There is no single "true" list ADT; operations
depend on what we want to do with lists.

List ADT contd.

• Need ADT for items in the list with methods for
assigning items and comparing them. Let’s call
that ADT ItemType

• In Java implementation, ItemType will be
assumed to be Object.

• The example is based on Shaffer’s book Chapter
4. However Shaffer identifies an ADT with an
interface in Java; this may be confusing because
ADT can be described independently from any
programming language.

List ADT methods

• a method to initialise a list (List() in Java
syntax)

 Postcondition: creates an empty list
• void insert(ItemType item)

Postcondition: item inserted into list (at the
current position) .

• ItemType remove()
Postcondition: item at current position deleted
from list (and returned).

• ItemType currValue()
Postcondition: The item at current position is
returned.

List methods contd.

• boolean isEmpty()
Postcondition: Returns true if list is empty, false
otherwise.

• void setFirst()
Postcondition: set current position at the first
position in the list.

• void next()
Postcondition: current position moves one to the
right

• void prev()
Postcondition: current position moves one to the
left

• etc. (see Shaffer’s book).

Possible modifications of List ADT

• insertion and deletion at a specified position

• no way to move back (to the previous item)

• ordered list: insertion in order

• (and different names for methods, obviously...)

Implementations of List ADT

Different data structures (concrete ways to organise
data in computer memory) can be used to implement
the List ADT:

• Various linked lists

• Recursive lists (consisting of head and tail)

• An array or vector

3

Array implementation of List ADT

Class for an array implementation of a List
(AList, see Shaffer).

Fields: an array of Objects listArray to store
items; int numInList to store the actual number
of items in the list; int curr to store the index of
the current position; etc.

Insertion at the current position

13 12 20 8 3

curr=0

insert 23 at current position:

13 12 20 8 3

insert 23 at current position:

Insertion at the current position

13 12 20 8 3

curr=0

insert 23 at current position

13 12 20 8 3

Insertion at the current position

13 12 20 3

curr=0

insert 23 at current position

13 12 20 8 3

Insertion at the current position

13 12 20 20 3

curr=0

insert 23 at current position

13 12 8 3

Insertion at the current position

13 20 20 3

curr=0

insert 23 at current position

13 12 8 3

4

Insertion at the current position

13 13 20 20 3

curr=0

insert 23 at current position

12 8 3

Insertion at the current position

13 13 20 20 3

curr=0

insert 23 at current position

23 12 8 3

Array implementation of List ADT

class AList {
 …
 public void insert(Object it){
 … (check that there is space and curr is
 a valid index)
 for(int i=numInList; i>curr;i--){
 listArray[i]=listArray[i-1];
 }
 listArray[curr]=it;
 numInList++;
 }

Array implementation of List ADT

remove() method is similar: also involves moving
items to close the gap in the array.

Note that both insert() and remove() methods in
this implementation have O(N) worst case
complexity.

Linked List

A linked list consists of linked nodes:

B
next next

A C

 Other Lists

A linked list is not the only way to imagine lists:

A

B

C

Nil

5

Linked List with Current

B
next next

A C

current

Linked List Implementation

Each node has a next field which says what the next item
in the list is. The list has a head and tail fields which
refer to the head and the last element of the list. There is
also an indicator for where we are in the list: curr points
to the node preceding the current element (technicality in
Shaffer’s implementation - does not have to be this way!)

LList BA
head

C
next next

tail

null
next

curr

current

Class for list elements (nodes)

class Link {
 private Object element;
 private Link next;
 Link(Object it, Link nextval) {
 element = it; next = nextval;}
 Object element() {return element;}
 Link next() {return next;}
 Link setNext(Link nextval) {
 return next = nextval;}
 Object setElement(Object it) {

 return element = it;}
}

Class for a linked list

class LList {
 private Link head;
 private Link tail;
 protected Link curr;

 … (constructor etc.)
 public void insert(Object it){
 if (curr!=null) {
 curr.setNext(new Link(it, curr.next());
 if(tail == curr) tail = curr.next();
 }
 else ...

Linked List

curr.setNext(new Link(it, curr.next());

insert a new object D:

list BA
head

C
next

null
next

tail
curr

next

Linked List

curr.setNext(new Link(it, curr.next());

create a link with D:

list BA
head

C
next

null
next

tail
curr

next

D
next

6

Linked List

curr.setNext(new Link(it, curr.next());

set this to be the next link from curr:

list BA
head

C
next

null
next

tail
curr

D
nextnext

Linked List

curr.setNext(curr.next().next());

Remove the current element:

list BA
head

C
next

null
next

tail
curr

D
nextnext

Linked List

curr.setNext(curr.next().next());

Find curr.next():

list BA
head

C
next

null
next

tail
curr

D
nextnext

Linked List

curr.setNext(curr.next().next());

Find curr.next().next:

list BA
head

C
next

null
next

tail
curr

D
nextnext

Linked List

curr.setNext(curr.next().next());

Set the link from curr to be to curr.next().next:

list BA
head

C
next

null
next

tail
curr

D
next

next

Comparison

• Complexity of insertion and deletion in linked
lists: O(1) (faster than in the array
implementation)

• Search for a given element: O(N) in both (given
that the list is unordered).

• Static vs dynamic: memory for the AList is
allocated in advance, for the LList it is allocated
as new elements are added. For the former
implementation, better to know the size in
advance.

• AList is a bit simpler to implement...

7

Summary

Different stages in solving a problem:

• Designing ADTs (e.g. List ADT)

• Choosing data structures to implement them (e.g.
as linked list,or as an array)

• Actual implementation: only here can you talk
about efficiency of methods, but since there are
standard ways to implement a linked list people
refer to “complexity of insertion in a linked list
with current”.

Reading

• Shaffer, Section 1,2 (Abstract data Types and
data Structures), Section 4.1 (Lists)

• Other list implementations in Java - any textbook
on data structures using Java

