Abstract Data Types

Previous lectures: algorithms and their efficiency
analysis.

Coming lectures: data structures
In this lecture:
« Abstract data types
- ADTsasadesign tool
- Examples: integer ADT, List ADT

Data Types

. All programming languages provide basic data

types.

. These have core operations (or methods):
. For example, i nt has arithmetic operations +,

-, |, * and comparisons<, >, ==, etc.

. Also provide composite (structured) data types

(arraysin Java, listsin Haskell).

Abstract Data Types

. Datatype = data + methods

. Abstract data type:
- Logica domain for data
- Collection of core operations/ methods

. ADTsabstract from implementation details, e.g.:
- How data domain is built from more basic data types
- How the core methods actually work

- Efficiency (complexity) of agorithmsfor core
methods

- Correctness of agorithms

ADTsasDesign Tool

. Useful aid in software design process.
. Consider what kind of data you need to solve the

problem.

. Consider which operations do you need to

perform with the data (which arguments the
operations take, what is their return type).

. Essentialy, designing a class interface (which

methods the class should have).

. (Theideaof ADTs predates object oriented
programming and is more general.)

Principle of Abstraction

When solving a problem, separate
. what isto be done, and
. how it isto be done

Integer ADT

Logical domain: integers (whole numbers greater or
equal to 0).
Methods:

- Integer add(Integer x, Integer y)
Postcondition: returns the sum of x and y

- Integer nultiply(lnteger x,I|nteger y)
Postcondition: returns x timesy

- bool ean equal s(I nteger x, Integer y)
Postcondition: returns true of x equal toy

and so on.We don't know how thisis going to be
implemented - as a 16-bit or a 32-bit number etc.

List ADT (Informal)

Data (what things are lists?): linear collections of
items.

Methods (what can one do with alist?):
- insert an element
- delete an element
- access the head of thelist
- moveto the next item from where you are

Thereisno single "true” list ADT; operations
depend on what we want to do with lists.

List ADT contd.

. Need ADT for itemsin the list with methods for

assigning items and comparing them. Let’scall
that ADT | t emType

. InJavaimplementation, | t enType will be

assumed to be (oj ect .

. The example is based on Shaffer’s book Chapter

4. However Shaffer identifiesan ADT with an
interface in Java; this may be confusing because
ADT can be described independently from any
programming language.

List ADT methods

. amethod toinitialisealist (Li st () inJava
syntax)
Postcondition: creates an empty list

. void insert(ltenType item
Postcondition: i t eminserted into list (at the
current position) .

. ItenType renove()
Postcondition: item at current position deleted
from list (and returned).

. ItenType currVal ue()
Postcondition: The item at current positionis
returned.

List methods contd.

. bool ean i sE

n is gpty()
Postcondition: Returnstrueif list is empty, false
otherwise.

. void setFirst()

Postcondition: set current position at the first
position in the list.

. void next()

P_o?]tconditi on: current position moves one to the
rig

t
. void prev(

IRe(]gtstconditi on: %;urrent position moves one to the

. etc. (see Shaffer’ s book).

Possible modifications of List ADT

. insertion and deletion at a specified position

. no way to move back (to the previous item)

. ordered list: insertion in order

. (and different names for methods, obvioudly...)

Implementations of List ADT

Different data structures (concrete ways to organise
datain computer memory) can be used to implement
theList ADT:

« Variouslinked lists
- Recursive lists (consisting of head and tail)
« Anarray or vector

Array implementation of List ADT

Class for an array implementation of aList
(AList, seeShaffer).

Fields: an array of Objects|i st Array to store
items; i nt nund nLi st to store the actual number
of itemsinthelist;int curr to storetheindex of
the current position; etc.

Insertion at the current position

[fe[=]efs] [| [|

I

curr=0

insert 23 at current position:

Insertion at the current position

wslelnls| (3] | | |
curr=0

insert 23 at current position

Insertion at the current position

wsleln] (s3] | | |
curr=0

insert 23 at current position

Insertion at the current position

sl |=[s[s] | | |
curr=0

insert 23 at current position

Insertion at the current position

(o] Ju[w[s]s] [| |

I

curr=0

insert 23 at current position

Insertion at the current position

| [»[e|=fefs] | [|

I

curr=0

insert 23 at current position

Insertion at the current position

(2813 12|208 3] | | |

I

curr=0

insert 23 at current position

Array implementation of List ADT

class AList {

public void insert(Qoject it){

...(check that there is space and curr is
a valid index)

for(int i=numnList; i>curr;i--){
listArray[i]=listArray[i-1];

}

listArray[curr]=it;

num nLi st ++;

Array implementation of List ADT

remove() method issimilar: also involves moving
itemsto close the gap in the array.

Note that bothi nsert () andrenove() methodsin
this implementation have O(N) worst case
complexity.

Linked List

A linked list consists of linked nodes:

next next

Other Lists

A linked list is not the only way to imagine lists:

Nil

Linked List with Current

next next
H =5

current

Linked List Implementation

Each node hasanext field which sayswhat the next item
inthelistis. Thelist hasahead and tail fieldswhich
refer to the head and the last element of thelist. Thereis
also an indicator for wherewe arein thelist: cur r - points
to the node preceding the current element (technicdlity in
Shaffer’ s implementation - does not have to be thisway!)

current

— head next next next
LList| —» — — -
curr

tail T

Classfor list elements (nodes)

class Link {
private Object el enent;
private Link next;
Li nk(Cbj ect it, Link nextval) {
element = it; next = nextval;}
Obj ect elenment() {return elenent;}
Link next() {return next;}
Li nk set Next (Li nk nextval) {
return next = nextval;}

Classfor alinked list

class LList {
private Link head;
private Link tail;
protected Link curr;

...(constructor etc.)
public void insert(Qoject it){
if (curr!=null) {
curr.set Next (new Link(it, curr.next());

Obj ect setEl enent(Object it) { if(tail == curr) tail = curr.next();
returnelement =it;} }
} else ...
Linked List Linked List

curr.setNext (new Link(it, curr.next());

insert a new object D:

1 head next next next
list | —» — 5 — —» | null

“ aur | tail T

curr.setNext (new Link(it, curr.next());
create alink with D:

next

1 head next next next
list | —» — 5 — —» | null

curr T

tail T

Linked List

curr.set Next (new Link(it, curr.next());

set this to be the next link from curr:

; next next
list
curr

Linked List

curr.setNext (curr.next().next());

Remove the current element:

; next next
list
curr

Linked List

curr.set Next (curr.next().next());
Find curr. next():

next,
i next next
list null
curr

Linked List

curr.set Next (curr.next().next());

Find curr. next (). next:

next,
i next next
list null
curr

Linked List

curr.set Next (curr.next().next());

Set thelink from curr to betocurr. next (). next:

next

) next next next
list — | null

‘ ‘ curr) I

tail

Comparison

. Complexity of insertion and deletionin linked
lists: O(1) (faster than in the array
implementation)

. Search for agiven element: O(N) in both (given
that the list is unordered).

. Static vs dynamic: memory for the AList is
allocated in advance, for the LList it is allocated
as new elements are added. For the former
implementation, better to know the sizein
advance.

. AListisabit smpler to implement...

Summary

Different stagesin solving a problem:
. Designing ADTs (e.g. List ADT)

. Choosing data structures to implement them (e.g.

aslinked list,or as an array)

. Actua implementation: only here can you talk
about efficiency of methods, but since there are
standard ways to implement a linked list people
refer to “complexity of insertion in alinked list
with current”.

Reading

. Shaffer, Section 1,2 (Abstract data Types and

data Structures), Section 4.1 (Lists)

. Other list implementations in Java - any textbook

on data structures using Java

