
1

Stacks and Queues

In this lecture:
h Variants on Lists
h Stacks
h Queues

Variants of Lists

• Previous lecture: double ended list (constant time
access to front and end of list). Simpler variant:
only access to the head of the list is constant time,
to get to the tail need to traverse the list.

• Circular lists (ring buffers)
• Doubly linked lists

Circular lists

• Last link points back to first link.

• Terminating traversals of the list:

• Maintain separate count of list size, or:

• Sentinel element at end of list

• Usage: circular buffers

Doubly linked lists

• Each link points to its successor and predecessor in
the list.

• Useful when the list should be traversible in both
directions. Example of use: text processor where
every line is an element in the list.

Stacks and Queues

• Not so much for data storage: more for organising
programs

Stack: Last In, First Out

2

Stack : Last In, First Out

A

Stack : Last In, First Out

A

B

Stack : Last In, First Out

A

B

C

Stack : Last In, First Out

A

B

Stack : Last In, First Out

A

Queue: First In, First Out

3

Queue: First In, First Out

A

Queue: First In, First Out

A B

Queue: First In, First Out

A B C

Queue: First In, First Out

B C

Queue ADT

As for lists, need an ADT for items which are kept
there. Let us call it ItemType (in Java, could be
Object).

Methods
• void enqueue(ItemType item)
Postcondition: item added to end of queue.
• boolean isempty()
Postcondition: returns true if queue is empty

Methods contd.

• ItemType dequeue()

Precondition: queue is not empty
Postcondition: returns item at front of queue and

deletes it from the queue.
• ItemType peek()

Precondition: queue is not empty
Postcondition: returns item at front of queue.

4

List implementation of queue

• Uses double ended list like the one from the
previous lecture.

• enqueue(Object item): insert at tail
• dequeue(Object item): remove and return the head

of the list.

List
head

null

tail

Array implementation of queue

• Two indices: one for the front and one for the back
of the queue.

• Deleting from front: increment front index
• Adding to back: increment back index.
• The queue wraps around, but front and back are not

allowed to cross past each other.

Array implementation of Queue

Example:

front = back = 0

size=0
capacity=4

Array implementation of Queue

Enqueue an item:

a

front
=0

size=1
capacity=4

back
=1

Array implementation contd.

• Make the queue full:

a b c d

front=back=0

size=capacity=4

Array implementation contd.

• Delete some things:

c d

frontback

5

Array implementation contd.

• Insert more things:

e c d

frontback

Java for the array implementation

• Fields: array arr; int front; int
back; int size; int capacity

• isempty(){
 return (size == 0);
 }
• peek() { if !isempty()
 return arr[front];
 else // throw exception}

Array implementation contd.

• enqueue(Object x){
if (size == capacity) throw an
exception: queue is full

else {
 arr[back] = x;
 size++;
 if (back==capacity-1) back = 0;
 else back++;
} }

Array implementation contd.

• dequeue(){
if (size == 0) throw an exception:
queue is empty

else {
 value = arr[front];
 if(front==capacity-1) front=0;
 else front++;
 size--;
 return value;
}}

Stack ADT

• Logical domain: stacks of ItemType.
• Methods:

• boolean isempty()
Postcondition: returns true if stack is empty
• ItemType peek()
Precondition: stack is not empty
Postcondition: item at top of stack returned.

Stack Methods contd.

• void push (ItemType item)
Postcondition: item added to top of stack
• ItemType pop()
Postcondition: item at top of stack returned and

deleted from stack

6

Variations

• If we consider stacks of fixed maximal size, need
the following variation:

• boolean full()
Postcondition: returns true if stack is full
• void push(ItemType item)
Precondition: stack is not full.
Postcondition: item added to top of stack.

Stack Implementations

• Vector implementation:

• Makes more sense when the size of stack is known
in advance.

• No dynamic memory allocation or deallocation
required once stack is created (unless we have to do
dynamic re-sizing).

• Constant time access to top of stack

Stack implementations

• Linked list implementation:

• No limits on size of stack, and size need not be
known in advance.

• Dynamic memory allocation and deallocation
whenever items are popped onto or pushed off the
stack

• Constant time access to top of stack.

Linked List Implementation

• Use a simple linked list
• peek() { return the value at
head;}

• push() {insert an item at the
head;}

• pop() {return the value at head
and reset the head to be the
head.next link;}

Vector Implementation

• Could have done an array implementation, but
resizable array (vector) really makes more sense.

• Fields: resizable vector vec holding the stack and
index of stack top (first free position in the stack),
top. Stack grows to the right.

Vector Implementation

• Methods:
• boolean isempty() {
 return (top == 0) ;
 }
• Object peek() {
 return vec.elementAt(top-1);
}// will throw an exception if the
stack is empty

7

Vector Implementation

• void push(Object item) {
 vec.add(top++, item);
}
• Object pop() {
 if (isempty) // throw exception
 else {
 return vec.elementAt(--top);
 }
}

Summary

• Stacks and queues are very important ADTs and
have many uses.

• Stacks: LIFO (last in, first out).
• Queues: FIFO (first in first out).
• Can be implemented in different ways.
• For stacks, vector implementation is better if

maximum size of stack can be predicted.
• Queues: array/vector or linked list implementation

(list implementation is more straightforward).

Eliminating Recursion

• Recursion overheads
• Tail recursion elimination
• Elimination of recursion using a stack (don't try this

at home)

Recursion is Expensive

• Recursive algorithms are elegant and usually easier
to understand and implement, but recursive calls are
expensive.

• Each recursive call is usually implemented by
placing all the necessary information (return
address, parameters, local variables) onto a stack.
Each return pops the corresponding record of the
stack.

• This uses both time (in setting up the record) and
space on the stack.

Recursive factorial

recFactorial(n) { // assume n >=0

 if (n <= 1) {

 return 1;

 } else {

 return n*recFactorial(n-1);

 }

}

Iterative Factorial

itFactorial(n) {

 result = 1;

 while (n > 1) {

 result = result * n;

 n--;

 }

return result;

}

8

Tail recursion optimisation

• Even if you don't replace recursion by iteration in
this case, it is likely that a decent compiler will.

• Instead of keeping all intermediate values on the
stack, it will update the same variable (using
constant space)

• In some cases this is not possible and explicit stack
is used: does not save a lot of space but is still more
efficient.

Just for illustration: factorial again

stackFactorial(n) {

 Stack stack = newStack();

 while (n>1) stack.push(n--);

 result = 1;

 while(! stack.isempty()) {

 result = result * stack.pop();

 }

 return result;

}

Real Example: Quicksort

public void recQuickSort(int[] arr,
int left, int right){

 if (right - left) <= 0) return;
 else {
 int border = partition(arr, int
left, int right);

 recQuickSort(arr, left, border-
1);

 recQuickSort(arr, border+1,
right);

 }
}

Quicksort using a stack

public void stackQuickSort(int[]
arr, int left, int right){

 Stack stack = new Stack(); //

 int border;

 // assume the stack can keep ints

 stack.push(left);

 stack.push(right);

Iterative Quicksort contd.

while(! stack.isempty()){

 int j = stack.pop();

 int i = stack.pop();

 border = partition(arr, i, j);

Iterative Quicksort contd.

if((border-1) - i > 1) {
 stack.push(i);
 stack.push(border-1);
 }
 if(j - (border+1) > 1) {
 stack.push(border+1);
 stack.push(j);
 }
 }
}

9

Example

Consider sorting the following array:

17 51683

Stack:

0 4321

4

0

Example

After the first iteration:

5 171683

Stack:

0 4321

1

0

4
3

Example

After the second iteration:

5 171683

Stack:

0 4321

1

0

Example

After the third iteration:

3 171685

Stack:

0 4321

Further reading

• Shaffer, chapter 4 (4.2 and 4.3).

Summary

• Recursion can always be eliminated using an
explicit stack if you need a more efficient
algorithm.

• However the resulting implementation maybe more
difficult to understand and debug.

