Stacks and Queues

In this lecture:

® Variantson Lists
® Stacks

® Queues

Variants of Lists

 Previous lecture: double ended list (constant time

access to front and end of list). Simpler variant:
only access to the head of thelist is constant time,
to get to the tail need to traverse the list.

e Circular lists (ring buffers)
» Doubly linked lists

Circular lists

e Last link points back to first link.

» Terminating traversals of thelist:

¢ Maintain separate count of list size, or:
¢ Sentinel element at end of list

» Usage: circular buffers

Doubly linked lists

Each link points to its successor and predecessor in
the list.

« Useful when the list should be traversible in both
directions. Example of use: text processor where
every lineisan element in the list.

Stacks and Queues

» Not so much for data storage: more for organising
programs

Stack: Last In, First Out

Stack : Last In, First Out

Stack : Last In, First Out

Stack : Last In, First Out

Stack : Last In, First Out

Stack : Last In, First Out

Queue: First In, First Out

Queue: First In, First Out

Queue: First In, First Out

Queue: First In, First Out

Queue: First In, First Out

Queue ADT

Asfor lists, need an ADT for itemswhich are kept
there. Let uscal it | t enilype (in Java, could be
Object).

Methods

e voi d enqueue(ltenType item
Postcondition: item added to end of queue.

* bool ean i senpty()

Postcondition: returns true if queueis empty

M ethods contd.

* | tenType dequeue()
Precondition: queue is not empty

Postcondition: returnsitem at front of queue and
deletesit from the queue.

e | tenType peek()
Precondition: queue is not empty
Postcondition: returnsitem at front of queue.

List implementation of queue

» Uses double ended list like the one from the
previous lecture.

» enqueue(Object item): insert at tail

« dequeue(Object item): remove and return the head
of the list.

'HHDHD Q —— null

tail

Array implementation of queue

« Two indices: one for the front and one for the back
of the queue.

Deleting from front: increment front index

Adding to back: increment back index.

« The queue wraps around, but front and back are not
alowed to cross past each other.

.

.

Array implementation of Queue

Example:
%
front = back =0

size=0
capacity=4

Array implementation of Queue

Enqueue an item:
al [
f:rg)nt EaIck

size=1
capacity=4

Array implementation contd.

» Make the queue full:

(2o]e]q]

%
front=back=0

Size=capacity=4

Array implementation contd.

 Delete some things:

Array implementation contd.

¢ Insert more things:

RN

to4
back front

Javafor the array implementation

e Fields:array arr; int front; int
back; int size; int capacity
e isenpty(){
return (size == 0);

}
e peek() { if lisenpty()
return arr[front];
el se // throw exception}

Array implementation contd.

* enqueue(oj ect x){

if (size == capacity) throw an
exception: queue is full
el se {
arr[back] = x;
Si ze++;

i f (back==capacity-1) back = 0;
el se back++;

P}

Array implementation contd.

« dequeue(){

if (size == 0) throw an exception:
queue is enpty
el se {

value = arr[front];

i f(front==capacity-1) front=0;
el se front ++;

si ze--;

return val ue;

H}

Stack ADT

 Logical domain: stacksof | t enTType.
* Methods:
* bool ean i senpty()
Postcondition: returns true if stack is empty
* | tenType peek()
Precondition: stack is not empty
Postcondition: item at top of stack returned.

Stack Methods contd.

e« void push (ltenfype item
Postcondition: item added to top of stack
* I tenType pop()

Postcondition: item at top of stack returned and
deleted from stack

Variations

« If we consider stacks of fixed maximal size, need
the following variation:

* bool ean full ()

Postcondition: returns true if stack isfull

e void push(lteniType item

Precondition: stack is not full.

Postcondition: item added to top of stack.

Stack Implementations

Vector implementation:

Makes more sense when the size of stack isknown
in advance.

No dynamic memory alocation or deallocation
required once stack is created (unless we have to do
dynamic re-sizing).

Constant time access to top of stack

Stack implementations

* Linked list implementation:

* No limits on size of stack, and size need not be
known in advance.

» Dynamic memory allocation and deallocation
whenever items are popped onto or pushed off the
stack

» Constant time access to top of stack.

Linked List Implementation

Useasimplelinked list

peek() { return the value at
head; }

push() {insert an itemat the
head; }

pop() {return the value at head
and reset the head to be the
head. next link;}

Vector Implementation

» Could have done an array implementation, but
resizable array (vector) really makes more sense.
 Fields: resizable vector vec holding the stack and
index of stack top (first free position in the stack),

t op. Stack growsto theright.

Vector Implementation

Methods:
e bool ean isempty() {
return (top == 0) ;

}
e Obj ect peek() {
return vec. el ement At (top-1);

Y}/ will throw an exception if the
stack is enpty

Vector |mplementation

* void push(Cbject item {
vec. add(t op++, item;

}
+ Qbj ect pop() {
if (isenpty) // throw exception
el se {
return vec. el enent At (--top);

}

Summary

¢ Stacksand queues are very important ADTs and
have many uses.

Stacks: LIFO (last in, first out).

Queues: FIFO (firstin first out).

Can be implemented in different ways.

« For stacks, vector implementation is better if
maximum size of stack can be predicted.

¢ Queues: array/vector or linked list implementation

(list implementation is more straightforward).

.

.

Eliminating Recursion

¢ Recursion overheads
« Tail recursion elimination

« Elimination of recursion using a stack (don't try this
at home)

Recursion is Expensive

« Recursive algorithms are elegant and usually easier
to understand and implement, but recursive calls are
expensive.

¢ Each recursive call is usually implemented by
placing al the necessary information (return
address, parameters, local variables) onto a stack.
Each return pops the corresponding record of the
stack.

¢ This uses both time (in setting up the record) and
space on the stack.

Recursive factorial

recFactorial (n) { // assune n >=0
if (n<=1) {
return 1;
} else {
return n*recFactorial (n-1);
}
}

Iterative Factorial

itFactorial (n) {
result = 1;
while (n > 1) {
result =result * n;
n--;
}

return result;

}

Tail recursion optimisation

« Evenif you don't replace recursion by iteration in
this case, it islikely that a decent compiler will.

« Instead of keeping al intermediate values on the
stack, it will update the same variable (using
constant space)

« In some casesthisis not possible and explicit stack
is used: does not save alot of space but is still more
efficient.

Just for illustration: factoria again

stackFactorial (n) {
Stack stack = newStack();
whil e (n>1) stack.push(n--);
result = 1;
whil e(! stack.isempty()) {
result = result * stack. pop();

}

return result;

Real Example: Quicksort

ublic void recQuickSort(int arr,
pint left, int?light){ (L]

if (right - left) <= 0) return;
el se {

int border = partition(arr, int
left, int right);

1 recQuickSort(arr, left, border-

~recQuickSort(arr, border+1,
right);

Quicksort using a stack

public void stackQuickSort(int[]
arr, int left, int right){

Stack stack = new Stack(); //

i nt border;

/] assume the stack can keep ints
st ack. push(left);

st ack. push(right);

Iterative Quicksort contd.

whi | e(! stack.isenmpty()){
int j = stack.pop();
int i = stack.pop();
border = partition(arr, i, j);

Iterative Quicksort contd.

if((border-1) - i > 1) {
st ack. push(i);
st ack. push(border-1);

}

if(j - (border+l) > 1) {
st ack. push(border +1);
st ack. push(j);

Example

After thefirst iteration:

Example
Consider sorting the following array:
0 1 2 3 4
17 3 8 16 5
Stack: 4
0
Example
After the second iteration:
0 1 2 3 4
5 3 8 16 17
Stack: 1
0

Further reading

* Shaffer, chapter 4 (4.2 and 4.3).

0 1 2 3 4
5 3 8 16 17
4
3
Stack: 1
0
Example
After the third iteration:
0 1 2 3 4
3 5 8 16 17
Stack:
Summary

* Recursion can always be eliminated using an
explicit stack if you need a more efficient
algorithm.

» However the resulting implementation maybe more
difficult to understand and debug.

