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Where were we….

• Comparing worst case performance of algorithms.

• Do it in machine-independent way.

• Time usage of an algorithm: how many basic
steps does an algorithm perform, as a function of
the input size.

• For example: given an array of length N (=input
size), how many steps does linear search perform?

Rate of Growth

   We don't know how long the steps actually take;
we only know it is some constant time. We can
just lump all constants together and forget about
them.

What we are left with is the fact that the time in
linear search grows linearly with the input, while
in binary search it grows logarithmically - much
slower.

Linear vs logarithmic growth

Input size
Linear growth:
T(N) = N* c

Logarithmic growth:
T(N) = c log2 N

10 10c c log2 10 = 4c

100 100c c log2 100 = 7c

1000 1000c c log2 1000 = 10c

10000 10000c c log2 10000 = 16c

O() complexity measure

Big O notation gives an asymptotic upper bound
on the actual function which describes
time/memory usage of the algorithm: logarithmic,
linear, quadratic, etc.

   The complexity of an algorithm is O(f(N)) if there
exists a constant factor K and an input size N0
such that the actual usage of time/memory by the
algorithm on inputs greater than N0 is always less
than K f(N).

Upper bound example

t(N)=3+N

f(N)=2N

N0 N

t(N) is in O(N)
because for all N>3,
2N > 3+N

Here, N0 = 3 and
K=2.

time

In other words

If an algorithm actually makes g(N) steps,

(for example g(N) = C1 + C2log2N)

there is an input size N' and

there is a constant K, such that

for all N > N' , g(N) ≤ K f(N)

then the algorithm is in O(f(N).

Binary search is O(log N):

C1 + C2log2N ≤ (C1 + C2 ) log2N for N > 2
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Example

What is the big(O) upper bound on this function:

C1 N
2 + C2 N + C3? (assume that C1 , C2 , C3 are

positive).

Proof that it is in O(N2 )

We need to show that there exist N0 and K such that

 C1 N
2 + C2 N + C3 ≤  K N2  for all N >  N0 .

There are many suitable N0 and K : for example,
N0= 1, K = C1 + C2 + C3 . It is easy to check that

C1 N
2 + C2 N + C3 ≤  (C1 + C2 + C3 ) N

2

for N > 1.

Proof that it is not in O(N )

We need to show that there are no N0 and K such
that

 C1 N
2 + C2 N + C3 ≤  K N  for all N >  N0 .

Suppose there are such N0 and K (reasoning by
contradiction). Then for all N >  N0 ,

 C1 N
2 + C2 N + C3 ≤  K N. Since C1 , C2 and C3  are

positive, C1 N
2 ≤  K N. Dividing both sides by N,

C1 N
 ≤  K. This is a contradiction: it says that no

matter how large N becomes, C1 N is less than
some fixed number (thanks to one of the students
for suggested simplification).

Comments

Obviously lots of functions form an upper bound,
we try to find the closest.

We also want it to be a simple function, such as

constant O(1)

logarithmic  O(log N)

linear O(N)

quadratic, cubic, exponential...

Typical complexity classes

Algorithms which have the same O( ) complexity
belong to the same complexity class.

Common complexity classes:

• O(1) constant time: independent of input length

• O(log N) logarithmic: usually results from
splitting the task into smaller tasks, where the size
of the task is reduced by a constant fraction

• O(N) linear: usually results when a given constant
amount of processing is carried out on each
element in the input.

Contd.

• O(N log N) : splitting into subtasks and combining
the results later

• O(N2): quadratic. Usually arises when all pairs of
input elements need to be processed

• O(2N): exponential. Usually emerges from a brute-
force solution to a problem.
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Practical hints

• Find the actual function which shows how the
time/memory usage grows depending on the input
N.

• Omit all constant factors.

• If the function contains different powers of N,
(e.g. N4 + N3 + N2), leave only the highest power
(N4).

• Similarly, an exponential (2N) eventually
outgrows any polynomial in N.

Warning about O-notation

• O-notation only gives sensible comparisons of
algorithms when N is large
Consider two algorithms for same task:
Linear: g(N) = 1000 N is in O(N)
Quadratic: g'(N) = N2/1000 is in O(N2 )

• The quadratic one is faster for N < 1 000 000.

• Some constant factors are machine dependent, but
others are a property of the algorithm itself.

Summary

• Big O notation is a rough measure of how the
time/memory usage grows as the input size
increases.

• Big O notation gives a machine-independent
measure of efficiency which allows comparison of
algorithms.

•  It makes more sense for large input sizes. It
disregards all constant factors, even those intrinsic
to the algorithm.

Recommended reading

• Shaffer, Chapter 3 (note that we are not going to
use Ω and Θ notation in this course, only the
upper bound O()).

Informal coursework

Which statements below are true?
• If an algorithm has time complexity O(N2), it

always makes precisely N2 steps, where N is the
size of the input.

• An algorithm with time complexity O(N) is
always runs slower than an algorithm with time
complexity O(log2(N)), for any input.

• An algorithm which makes C1 log2(N) steps and
an algorithm which makes C2 log4(N) steps
belong to the same complexity class (C1 and C2
are constants).


