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Correctness of algorithms

Two issues:

• Given an algorithm, prove that it is correct
(always achieves the intended result, e.g. a sorted
array).

• Design an algorithm with intended properties from
scratch (even more difficult)

Additional reading

• Frank M. Carrano, Janet J. Prichard. Data
abstraction and problem solving with Java.
Addison Wesley Longman, 2001. Chapter 1,
Problem solving and software engineering (on
verification).

• Duane A. Bailey. Data structures in Java for the
principled programmer. McGraw-Hill 1999.
Chapter 2, Comments, conditions and assertions
(pre- and postconditions).

" Roland Backhouse. Program Construction :
Calculating Implementations from
Specifications. John Wiley & Sons 2003.

Disproving correctness

• Just one counterexample is enough

• Testing may fail to discover a bug

Proving correctness

• Formulate precisely the property which has to
hold

• If necessary, formulate relevant properties for
smaller parts of an algorithm : program assertions

Assertions

• Assertion: claim about values of program
variables before or after a statement or a group of
statements is executed

   Typical assertions:

• Precondition (usually of a method): what we
expect to hold before the method is executed.

• Postcondition: what holds after the method is
executed.

Hoare triples

• {P} S {Q}: P precondition, S statements, Q
postcondition.

• Meaning: provided P holds before S is executed,
then after S is executed,  Q holds.

• for example:
{x < 10} x = x + 20 {x < 30}
{x < y} while (x < y) x++ {x=y}
• For a small programming language, can provide

axioms for every construct in the language and
derive postconditions using axioms
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Assignment axiom

• If the only programming construct was
assignment, here is an axiom to verify all
programs:

{Q(e substituted for x)} x = e {Q}
• For example, if want to prove
{x < 10} x = x + 20 {x < 30} then the

assignment axiom gives
{x+20 < 30} x = x + 20 {x < 30} and from

extra knowledge about maths etc we derive that
{x+20 < 30} is equivalent to {x < 10}.

Example

• In the programs we usually write there are
lots of constructs and they also use other
people’s code.

• Less formal approach (but good practice):
write pre- and postconditions for significant
chunks of code/methods.

• Example:  code in Bailey’s book.

Example

public static void sort(int[] arr, int len)

  // pre: len is the length of the array arr

  // post: arr is sorted in ascending order

(sorted means:

for all indices i such that 0 <= i < len-1, arr[i] <= arr[i+1],

or arr[0] <= arr[1] <=…<= arr[len-1])

Correctness

To prove that an algorithm is correct:

• Determine preconditions and postconditions for
the whole algorithm.

• Cascade statement assertions together, so that
postconditions for one provide preconditions for
the next.

• Prove correctness of individual statements.

• Hence show that executing algorithm with stated
preconditions terminates and leads to stated post-
conditions.

Example (sort+reverse=sort in
reverse order)

public static void sort(int[] arr, int len)
  // pre: len is the length of the array arr
  // post: arr is sorted in ascending order
public static void reverse(int[] arr)
  // post: the order of elements in arr is
  // reversed (e.g. [9 5 10] -> [10 5 9])
// A1: the length of arr is len
sort(arr,len);
// A2: arr is sorted in ascending order:

arr[0] <= arr[1] <=…<= arr[len-1]
reverse(arr);
// A3: the order of arr is reversed, hence

arr[0] >= arr[1] >=…>= arr[len-1]

Loop Invariants

• Assertions for loops are less trivial, because
loops may be executed many times over, with
slightly different preconditions at the beginning of
each iteration. Focus on those preconditions that
remain constant between iterations.

• Known as loop invariants:   true before and after
each iteration through a loop.
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Example

pos_greatest = 0;
for (int j = 0; j < =i; j++) {
   if( arr[j] > arr[pos_greatest]) {
      pos_greatest = j;
   }
}

Invariant: pos_greatest is the index of the largest
array element between 0 and j inclusive.

(More formally, for all k such that 0 <=k<=j,
arr[k] <= arr[pos_greatest]. )

Correctness of loops

 To prove correctness of a while loop (or: that
assertion A holds after the loop terminates):

• Prove that the loop eventually terminates (by
finding the bound function for the loop)

• Find a suitable invariant (there are infinitely many
invariants for each loop, most of them useless)

• Prove that A is true after last iteration (usually by
substituting the state in which the loop terminates
in the invariant)

Partition algorithm

red = l;  // set at the left border of the
          // range
blue = r; // set at the right border where the
          // pivot sits
while(red < blue) {
   if (arr[red] < pivot) red++;
   else {
        blue--;
        swap(arr, red, blue);
    }
}
swap(arr, blue, r); // put the pivot on the
                    // border
return blue;

Postcondition for the partition

public int partition(int[] arr, int l, int r)
// post: returns and integer k such that
//       for all indices i such that l<=i<k,
//       arr[i]<arr[k] and
//       for all indices i such that k<=i<r
//       arr[i]>=arr[k]

Example

Correctness proof for the partition algorithm:
• loop invariant: for all indices i,

(if l <= i < red then arr[i] < pivot) and
(if blue <= i < r then arr[i] >= pivot)

• bound function =  blue - red
• decreases by 1 at every step; the loop terminates

when it is equal to 0 (blue = red).
• When blue = red = k the invariant becomes: for

all indices i,  (if l <= i < k  then arr[i] < pivot)
and  (if  k <= i < r then arr[i] >= pivot)

• When the pivot is swapped, pivot = arr[k].

Informal coursework

• Informal coursework is on the web.
• Will be discussed in tutorials next week.


