
1

Graphs

Plan of the lecture:

• What is a graph

• What are they used for

• Graph problems

• Two ways of implementing graphs

Definition of a graph

A graph is a set of nodes, or vertices, connected by edges.

A

G

F

C
D

E

B

Applications of Graphs

Graphs can be used to represent

• networks

• flow charts

• states of automaton / program

• tasks in some project (some of which should be completed
before others), so edges correspond to prerequisites.

Directed and Undirected Graphs

Graphs can be

• undirected (edges don’t have direction).

• directed (edges have direction).

A

C

D

B

directed graph

Directed and Undirected Graphs

Undirected graphs can be represented as directed graphs
where for each edge (X,Y) there is a corresponding edge
(Y,X).

undirected graphA B C

corresponding

directed graph

A B C

Weighted and Unweighted
Graphs

Graphs can also be

• unweighted (as in the previous examples)

• weighted (edges have weights).

A

C

D

B
10

14 8

12

2

Notation

• Set V of vertices (nodes)

• Set E of edges (E ⊆ V × V)

Example: V = {A, B, C}, E = {(A,B), (A,C),(B,C)}:

B

A

C

Adjacency relation

• Node B is adjacent to A if there is an edge from A to B.

A B

Paths and reachability

• A path from A to B is a sequence of vertices A1,...,An such
that there is an edge from A to A1, from A1 to A2, ..., from
An to B.

• A vertex B is reachable from A if there is a path from A to
B

A A1 A2 A3 A4 A5 B

More Terminology

• A cycle is a path from u to itself

• Graph is acyclic if it does not have cycles

• Graph is connected if there is a path between every pair of
vertices

• Graph is strongly connected if there is a path in both
directions between every pair of vertices

Some graph problems

• searching a graph for a vertex

• finding a path in the graph (from one vertex to another) ;
finding the shortest path between two vertices

• cycle detection

More graph problems

• topological sort (finding a linear sequence of vertices
which agrees with the direction of edges in the graph;
applied for scheduling tasks in a project)

• minimum spanning tree (deleting as many edges in a graph
as possible, so that all vertices are still connected by
shortest possible edges. Useful in circuit design.)

3

How to implement a graph

• As with lists, two approaches:

• using a static indexed data structure

• using a dynamic data structure

Static implementation:Adjacency
Matrix

• Store nodes in the array: each node is associated with an
integer (array index).

• Represent information about the edges using a two
dimensional array, where

array[i][j] == 1

iff there is an edge from node i to node j.

Example

A

0 1 2 3

0

1

2

0 1 1

0 0 0

0 0 0

3 0 0 0

0

1

1

0

B

D

C

A B C D
0 1 2 3

adjacency
matrix

node indices

Weighted graphs

• For weighted graphs, place weights in matrix (for no edge,
-1 or Integer.MAX_VALUE)

Example implementation

• If we know which nodes the graph is going to have, and
the number of nodes is not going to change, we can
implement a graph as follows.

• ArrayGraph class has an array to keep nodes (Objects)
and a two dimensional array to keep 0s and 1s depending
on whether there is an edge between corresponding nodes.

ArrayGraph class

public class ArrayGraph {

 int[][] matrix; // adjacency matrix

 Object[] positions;

 public ArrayGraph(Object[] nodes) {

 positions = nodes;

 matrix = new

 int[nodes.length][nodes.length];

 }// this fills matrix with 0s

4

ArrayGraph class

public void addEdge(Object x, Object y) {

 if (indexOf(x)== -1 | indexOf(y) == -1)
return;

 else matrix[indexOf(x)][indexOf(y)]= 1;

}

/* This method does nothing if nodes do
not exist. indexOf method follows. */

ArrayGraph class

// to find o’s position in the matrix...

public int indexOf(Object o) {

 for(int i=0; i<positions.length; i++){

 if(positions[i].equals(o)) {

 return i;
 }
 }
 return -1; // o is not in the graph

}

Notes on ArrayGraph class

• Keeping edge labels in an array is a bit awkward (have to
look through the array each time to find out node’s
position in the matrix)

• Alternative solution could be using a HashMap: the Object
(node) is the key, and Integer object holding its index is the
value.

• When we need to know the node o’s position we could do

int pos =

((Integer) map.get(o)).intValue();

Disadvantages of adjacency
matrices

• Sparse graphs: few edges for number of vertices.

• Leads to many zero entries in adjacency matrix: wastes
space, makes many algorithms less efficient (to find nodes
adjacent to a given node, have to iterate through the whole
row, even if there are few 1s there).

• Also, if the number of nodes in the graph may change,
matrix representation is too inflexible (especially if we
don’t know the maximal size of the graph).

Adjacency List

• For every vertex, keep a list of adjacent vertices.

• Represent a graph as a list or array of such lists: this is
called an adjacency list implementation.

Adjacency list

A

C

D

B

A

B

C

B, C

D

D

D

nodes list of adjacent nodes

5

Adjacency List Implementation

• Graph can be implemented as a list of lists, or any other
structure holding vertices and lists of their neighbours.

• The simplest example is the LinkedGraph class: it
keeps a list of GraphNode objects. Each GraphNode
object keeps an Object and a neighbours list (of
GraphNode objects).

GraphNode class

class GraphNode {

 Object label;

 LinkedList neighbours;

 GraphNode(Object o) {

 label = o;

 neighbours = new LinkedList();

 }
}

LinkedGraph class

import java.util.*;

public class LinkedGraph {

 LinkedList nodes;

 public LinkedGraph() {}

// constructor sets fields to null

 public void addNode(Object o) {

 nodes.add(new GraphNode(o));

 }

LinkedGraph class

public boolean containsNode(Object o) {

 ListIterator li = nodes.listIterator();

 while (li.hasNext()) {

 GraphNode n = (GraphNode) li.next();

 if (n.label.equals(o)) {
 return true;
 }
 }

 return false;

}

LinkedGraph class

• … other methods you would have to write yourself, but the
idea should be clear:

• given an object (or two objects), find their corresponding
GraphNode objects in the list, and then modify their
neighbours lists etc.

• To implement graph traversal algorithms, we may need to
add extra fields to the GraphNode class, for example a
boolean flag to say that we have seen this node before.

Notes on LinkedGraph class

• Again, iterating through the list of nodes every time we
need to find a GraphNode object corresponding to an
Object o is awkward.

• One option (there are many others) is to use a HashMap:
Object o is the key, and its neighbours list (of
Objects) is the value. This way, don’t need a
GraphNode class.

6

HashMap implementation

Key Value

A Linked list containing B,C

B Linked list containing D

C Linked list containing D

D Empty linked list

Summary and Reading

• Graphs can be used in many applications (anywhere where
diagrams and maps are used).

• Graphs can be implemented with adjacency matrices or
adjacency lists.

• For the formal coursework, have a look at Java Collections
API to choose a suitable data structure for your
implementation.

• Have a look at Shaffer, chapter 7 for graph terminology.
His implementation of graphs assumes fixed size graphs
(storing ints).

