Graphs

Plan of the lecture:

e Whatisagraph

¢ What are they used for

¢ Graph problems

« Two ways of implementing graphs

Definition of agraph

A graphisaset of nodes, or vertices, connected by edges.

Applications of Graphs

Graphs can be used to represent
* networks

« flow charts

 states of automaton / program

* tasksin some project (some of which should be completed
before others), so edges correspond to prerequisites.

Directed and Undirected Graphs

Graphs can be
« undirected (edges don’t have direction).
« directed (edges have direction).

B

D irected graph

Directed and Undirected Graphs

Undirected graphs can be represented as directed graphs
where for each edge (X,Y) thereis a corresponding edge
(Y X).

A—B——C undirected graph
Ae——=B—C corresponding
directed graph

Weighted and Unweighted
Graphs

Graphs can aso be
« unweighted (asin the previous examples)
« weighted (edges have weights).

D

) /B 12
S

Notation

e SetV of vertices (nodes)
e SetEof edges(ECV xV)
Example: V ={A, B, C}, E={(A,B), (A,C),(B,C)}:

B C
>\—'/

A

Adjacency relation
* Node Bisadjacent to A if thereis an edge from A to B.

A——B

Paths and reachability

» A path from A to B isasequence of verticesA,,...,A,, such
that there isan edge from A to A, fromA; to A, ..., from
A, t0B.

A—A—»A—>A,—A,—»A;—B

* A vertex Bisreachable from A if thereisapath from A to
B

More Terminology

¢ A cycleisapath fromuto itself
* Graphisacyclicif it does not have cycles

» Graph is connected if thereis a path between every pair of
vertices

» Graph is strongly connected if thereis apath in both
directions between every pair of vertices

Some graph problems

« searching agraph for avertex

finding a path in the graph (from one vertex to another) ;
finding the shortest path between two vertices

« cycle detection

More graph problems

« topological sort (finding alinear sequence of vertices
which agrees with the direction of edgesin the graph;
applied for scheduling tasksin a project)

* minimum spanning tree (deleting as many edgesin a graph
as possible, so that all vertices are still connected by
shortest possible edges. Useful in circuit design.)

How to implement a graph

« Aswith lists, two approaches:
¢ using astatic indexed data structure
¢ using adynamic data structure

Static implementation: Adjacency
Matrix

« Store nodesin the array: each node is associated with an
integer (array index).

» Represent information about the edges using atwo
dimensiona array, where

array[i][j] == 1

iff thereis an edge from node i to nodej.

Example
B
A /> D
c
[ATB[C] D] nodeindices adjacency
0 12 3 matrix

Weighted graphs

» For weighted graphs, place weights in matrix (for no edge,
-1 or Integer. MAX_VALUE)

Example implementation

« If we know which nodes the graph is going to have, and
the number of nodesis not going to change, we can
implement agraph asfollows.

e ArrayG aph class has an array to keep nodes (Objects)
and atwo dimensional array to keep Os and 1s depending

on whether there is an edge between corresponding nodes.

ArrayG aph class

public class ArrayG aph {
int[][] matrix; // adjacency matrix
Obj ect[] positions;
public ArrayG aph(Object[] nodes) {
posi tions = nodes;
matrix = new
i nt[nodes. | ength] [nodes. | engt h];
Y/ this fills matrix with Os

ArrayG aph class

public voi d addEdge(Cbject x, oject y) {

if (indexOf(x)== -1 indexCf(y) == -1)
return;
el se matrix[indexOf (x)][indexOi(y)]= 1;

}

/* This method does nothing if nodes do
not exist. indexOf method fol l ows. */

ArrayG aph class

/1 to find o's position in the matrix...
public int indexOr(Object o) {
for(int i=0; i<positions.length; i++){
i f(positions[i].equals(o)) {
return i;
}
}

return -1; // o is not in the graph

Noteson ArrayG aph class

» Keeping edge labelsin an array isabit awkward (have to
look through the array each time to find out node's
position in the matrix)

« Alternative solution could be using a HashMap: the Object
(node) isthe key, and Integer object holding itsindex isthe
vaue.

* When we need to know the node 0’ s position we could do
int pos =
((Integer) map.get(0)).intValue();

Disadvantages of adjacency
matrices

* Sparse graphs: few edges for number of vertices.

« Leadsto many zero entries in adjacency matrix: wastes
space, makes many algorithms less efficient (to find nodes
adjacent to a given node, have to iterate through the whole
row, even if there are few 1sthere).

« Also, if the number of nodesin the graph may change,

matrix representation is too inflexible (especialy if we
don’t know the maximal size of the graph).

Adjacency List

« For every vertex, keep alist of adjacent vertices.

* Represent agraph asalist or array of such lists: thisis
called an adjacency list implementation.

Adjacency list
B nodes list of adjacent nodes
/\ ' !
A — B,C
A D B—— D
C— D
C

D—

Adjacency List Implementation

« Graph can be implemented as alist of lists, or any other
structure holding vertices and lists of their neighbours.

e Thesimplest exampleistheLi nkedGr aph class: it
keepsalist of G aphNode objects. Each G- aphNode
object keeps an Qbj ect and aneighbourslist (of
G aphNode objects).

G aphNode class

cl ass G aphNode {
Obj ect | abel ;
Li nkedLi st nei ghbours;

G aphNode(oj ect 0) {
| abel = o;
nei ghbours = new Li nkedLi st ();

Li nkedGr aph class

inport java.util.*;
public class LinkedG aph {
Li nkedLi st nodes;
public LinkedGaph() {}
/'l constructor sets fields to null
public void addNode(Obj ect o) {
nodes. add(new G aphNode(0));

Li nkedGr aph class

publ i c bool ean cont ai nsNode(Qbj ect 0) {
Listlterator |Ii = nodes.listlterator();
while (li.hasNext()) {
G aphNode n = (GraphNode) li.next();
if (n.label.equals(o)) {
return true;

}
}

return false;

Li nkedG aph class

... other methods you would have to write yourself, but the
ideashould be clear:

« given an object (or two objects), find their corresponding
G aphNode objectsin thelist, and then modify their
neighbours lists etc.

* Toimplement graph traversal algorithms, we may need to
add extrafields to the G- aphNode class, for example a
boolean flag to say that we have seen this node before.

Noteson Li nkedG aph class

« Again, iterating through the list of nodes every time we
need to find aG- aphNode object corresponding to an
Obj ect o isawkward.

« Oneoption (there are many others) isto use aHashMap:
Obj ect o isthekey, and its neighbourslist (of
Obj ect s) isthe value. Thisway, don't need a
Gr aphNode class.

HashMap implementation

Key Vaue

A Linked list containing B,C
B Linked list containing D
C Linked list containing D
D Empty linked list

Summary and Reading

Graphs can be used in many applications (anywhere where
diagrams and maps are used).

Graphs can be implemented with adjacency matrices or
adjacency lists.

For the formal coursework, have alook at Java Collections
API to choose a suitable data structure for your
implementation.

Have alook at Shaffer, chapter 7 for graph terminology.
Hisimplementation of graphs assumes fixed size graphs
(storing ints).

