DFS, BFS, cycle detection

- Previous lecture
- What is a graph
- What are they used for
- Terminology
- Implementing graphs
create a queue 0
mark v as visited and put v into Q
while Q is non-empty
remove the head u of Q
mark and enqueue all (unvisited) neighbours of u

BFS starting from vertex v :

Today and tomorrow:

- Depth-first and breadth-first search
- Using DFS to detect cycles in directed graphs
- Complexity of breadth-first search
- Complexity of depth-first search

BFS starting from A:
$\mathrm{Q}=\{\mathrm{A}\}$

Simple DFS

DFS starting from vertex v :
create a stack S
mark v as visited and push v onto S
while S is non-empty
peek at the top u of S
if u has an (unvisited) neighbour w,
mark w and push it onto S
else pop S

DFS starting from A :

DFS starting from A:

DFS starting from A:

Modification of depth first search

Modification of depth first search

- How to get DFS to detect cycles in a directed graph: idea: if we encounter a vertex which is already on the stack, we found a loop (stack contains vertices on a path, and if we see the same vertex again, the path must contain a cycle).

Modified DFS starting from v :
all vertices coloured white
create a stack S
colour v gray and push v onto S
while S is non-empty

- Instead of visited and unvisited, use three colours:
peek at the top u of S
white = unvisited
- gray = on the stack
- black $=$ finished (we backtracked from it, seen everywhere we can reach from it)
if u has a gray neighbour, there is a cycle
else if u has a white neighbour w,
colour w gray and push it onto S
else colour u black and pop S

Tracing modified DFS from A
Tracing modified DFS from A

Tracing modified DFS from A

Tracing modified DFS from A
Tracing modified DFS from A

Pseudocode for BFS and DFS

- To compute complexity, I will be referring to an adjacency list implementation
- Assume that we have a method which returns the first unmarked vertex adjacent to a given one
GraphNode firstUnmarkedAdj (GraphNode v) list of v's neighbours
$\mathrm{v} \longrightarrow \mathrm{u}$ (marked) $\rightarrow \mathrm{u} 2$ (unmarked) $\rightarrow \mathrm{u} 3$ (unmarked) \uparrow bookmark

Implementation of firstUnmarkedAdj()

- We keep a pointer into the adjacency list of each vertex so that we do not start to traverse the list of adjacent vertices from the beginning each time.
v
$\longrightarrow \mathrm{u} 1$ (marked) $\rightarrow \mathrm{u} 2$ (unmarked) $\rightarrow \mathrm{u} 3$ (unmarked)
\qquad
currUnmarkedAdj \uparrow \uparrow

Pseudocode for breadth-first search starting from vertex s
 // GraphNode
Queue $Q=$ new Queue();
Q.enqueue (s);
while(! Q.isempty()) \{
$v=Q$.dequeue ();
$\mathbf{u}=$ firstUnmarkedAdj(v);
while (u ! = null) \{
u.marked = true;
Q.enqueue (u);
$u=$ firstUnmarkedAdj (v) ; \} \} \}

Pseudocode for DFS

```
s.marked = true;
```

Stack $S=$ new Stack();
S.push(s);
while(! S.isempty()) \{
v = S.peek();
$\mathrm{u}=\mathrm{firstUnmarkedAdj}(\mathrm{v})$;
if (u == null) S.pop();
else \{
u.marked = true;
S.push (u) ;
\}
\}

Space Complexity of BFS and DFS

- Need a queue/stack of size $|\mathrm{V}|$ (the number of vertices). Space complexity O(V).

Time Complexity of BFS and DFS

- In terms of the number of vertices V : two nested loops over V , hence $\mathrm{O}\left(\mathrm{V}^{2}\right)$.
- More useful complexity estimate is in terms of the number of edges. Usually, the number of edges is less than V^{2}.

Time complexity of BFS

Time complexity of BFS

Time complexity of BFS
Time complexity of BFS

Complexity of breadth-first search

- Assume an adjacency list representation, V is the number of vertices, E the number of edges.
- Each vertex is enqueued and dequeued at most once.
- Scanning for all adjacent vertices takes $\mathrm{O}(|\mathrm{E}|)$ time, since sum of lengths of adjacency lists is $|E|$
- Gives a $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time complexity.

Complexity of depth-first search

- Each vertex is pushed on the stack and popped at most once.
- For every vertex we check what the next unvisited neighbour is.
- In our implementation, we traverse the adjacency list only once. This gives $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ again.

