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DFS, BFS, cycle detection

• Previous lecture

• What is a graph

• What are they used for

• Terminology

• Implementing graphs

Today and tomorrow:

• Depth-first and breadth-first search

• Using DFS to detect cycles in directed graphs

• Complexity of breadth-first search

• Complexity of depth-first search

Breadth first search

BFS starting from vertex v:

create a queue Q

mark v as visited and put v into Q

while Q is non-empty

  remove the head u of Q

  mark and enqueue all (unvisited)
neighbours of u
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BFS starting from A:
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Simple DFS

DFS starting from vertex v:

create a stack S

mark v as visited and push v onto S

while S is non-empty

  peek at the top u of S

  if u has an (unvisited)neighbour w,
mark w and push it onto S

  else pop S
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DFS starting from A:
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DFS starting from A:
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DFS starting from A:
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Modification of depth first search

• How to get DFS to detect cycles in a directed graph:

idea: if we encounter a vertex which is already on the stack,
we found a loop (stack contains vertices on a path, and if
we see the same vertex again, the path must contain a
cycle).

• Instead of visited and unvisited, use three colours:
– white = unvisited

– gray = on the stack

– black = finished (we backtracked from it, seen everywhere we can
reach from it)

Modification of depth first search

Modified DFS starting from v:
all vertices coloured white
create a stack S
colour v gray and push v onto S

while S is non-empty
  peek at the top u of S
  if u has a gray neighbour, there is a
cycle

  else if u has a white neighbour w,
colour w gray and push it onto S

  else colour u black and pop S
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Tracing modified DFS from A
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A
B

C

D
E

       D
       B
S = A

push:

       E
       D
       B
S = A

E has a gray neighbour: B!
Found a loop!
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Pseudocode for BFS and DFS

• To compute complexity, I will be referring to an adjacency
list implementation

• Assume that we have a method which returns the first
unmarked vertex adjacent to a given one:
GraphNode firstUnmarkedAdj(GraphNode v)

v u1(marked) u2(unmarked) u3(unmarked)

list of v’s neighbours

bookmark

Implementation of
firstUnmarkedAdj()

• We keep a pointer into the adjacency list of each vertex so
that we do not start to traverse the list of adjacent vertices
from the beginning each time.

v u1(marked) u2(unmarked) u3(unmarked)

currUnmarkedAdj

Pseudocode for breadth-first
search starting from vertex s

s.marked = true; // marked is a field in
                 // GraphNode
Queue Q = new Queue();
Q.enqueue(s);

while(! Q.isempty()) {
   v = Q.dequeue();
   u = firstUnmarkedAdj(v);

   while (u != null){
      u.marked = true;
      Q.enqueue(u);
      u = firstUnmarkedAdj(v);}}}

Pseudocode for DFS

s.marked = true;
Stack S = new Stack();
S.push(s);
while(! S.isempty()){
   v = S.peek();
   u = firstUnmarkedAdj(v);
   if (u == null) S.pop();
   else {
      u.marked = true;
      S.push(u);
   }
}

Space Complexity of BFS and
DFS

• Need a queue/stack of size |V| (the number of vertices).
Space complexity O(V).

Time Complexity of BFS and
DFS

• In terms of the number of vertices V: two nested loops
over V, hence O(V2).

• More useful complexity estimate is in terms of the number
of edges. Usually, the number of edges is less than V2.
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Time complexity of BFS

Adjacency lists:

V        E

v0: {v1,v2}

v1: {v3}

v2: {v3}

v3: {}

v0

v1

v3

v2

Time complexity of BFS

Adjacency lists:

V        E

v0: {v1,v2} mark, enqueue
v0

v1: {v3}

v2: {v3}

v3: {}

v0

v1

v3

v2

Time complexity of BFS

Adjacency lists:

V        E

v0: {v1,v2} dequeue v0;
mark, enqueue v1,v2

v1: {v3}

v2: {v3}

v3: {}

v0

v1

v3

v2

Time complexity of BFS

Adjacency lists:

V        E

v0: {v1,v2}

v1: {v3} dequeue v1; mark,
enqueue v3

v2: {v3}

v3: {}

v0

v1

v3

v2

Time complexity of BFS

Adjacency lists:

V        E

v0: {v1,v2}

v1: {v3}

v2: {v3} dequeue v2, check
its adjacency list (v3
already marked)

v3: {}

v0

v1

v3

v2

Time complexity of BFS

Adjacency lists:

V        E

v0: {v1,v2}

v1: {v3}

v2: {v3}

v3: {} dequeue v3; check its
adjacency list

v0

v1

v3

v2
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Time complexity of BFS

Adjacency lists:

V        E

v0: {v1,v2} |E0| = 2

v1: {v3} |E1| = 1

v2: {v3} |E2| = 1

v3: {} |E3| = 0
Total number of steps:
|V| + |E0| + |E1| + |E2| +|E3|

=
= |V|+|E|.

v0

v1

v3

v2

Complexity of breadth-first
search

• Assume an adjacency list representation, V is the number
of vertices, E the number of edges.

• Each vertex is enqueued and dequeued at most once.
• Scanning for all adjacent vertices takes O(|E|) time, since

sum of lengths of adjacency lists is |E|.
• Gives a O(|V|+|E|) time complexity.

Complexity of depth-first search

• Each vertex is pushed on the stack and popped at most
once.

• For every vertex we check what the next unvisited
neighbour is.

• In our implementation, we traverse the adjacency list only
once. This gives O(|V|+|E|) again.


