DFS, BFS, cycle detection

- · Previous lecture
 - What is a graph
 - What are they used for
 - Terminology
 - Implementing graphs

Today and tomorrow:

- Depth-first and breadth-first search
- Using DFS to detect cycles in directed graphs
- Complexity of breadth-first search
- Complexity of depth-first search

Breadth first search

BFS starting from vertex v:

create a queue Q
mark v as visited and put v into Q
while Q is non-empty
 remove the head u of Q
 mark and enqueue all (unvisited)
 neighbours of u

BFS starting from A:

$$Q = \{A\}$$

$$Q = \{B,G\}$$

$$Q = \{B,G\}$$

BFS starting from A:

Simple DFS DFS starting from vertex v: create a stack S mark v as visited and push v onto S while S is non-empty peek at the top u of S if u has an (unvisited)neighbour w, mark w and push it onto S else pop S

DFS starting from A: S={A,B,C,E,F} S={A,B,C,E} S={A,B,C} S={A,B} S={A,B} S={A,B}

Modification of depth first search

- How to get DFS to detect cycles in a directed graph:
 idea: if we encounter a vertex which is already on the stack, we found a loop (stack contains vertices on a path, and if we see the same vertex again, the path must contain a cycle).
- Instead of visited and unvisited, use three colours:
 - white = unvisited
 - gray = on the stack
 - black = finished (we backtracked from it, seen everywhere we can reach from it)

Modification of depth first search

all vertices coloured white
create a stack S
colour v gray and push v onto S
while S is non-empty
peek at the top u of S
if u has a gray neighbour, there is a
cycle
else if u has a white neighbour w,
colour w gray and push it onto S
else colour u black and pop S

Modified DFS starting from v:

Tracing modified DFS from A

 $S = \{\,\}$

Tracing modified DFS from A

Tracing modified DFS from A

$$S = \{\}$$

$$S = A$$

$$B$$

$$S = A$$

Tracing modified DFS from A

Tracing modified DFS from A

pop: S = A

Tracing modified DFS from A

Tracing modified DFS from A

Tracing modified DFS from A

Pseudocode for BFS and DFS

• To compute complexity, I will be referring to an adjacency list implementation

GraphNode firstUnmarkedAdj(GraphNode v)

• Assume that we have a method which returns the first unmarked vertex adjacent to a given one:

```
list of v's neighbours
v \longrightarrow u1(marked) \rightarrow u2(unmarked) \rightarrow u3(unmarked)
```

↑ bookmark

Implementation of firstUnmarkedAdj()

 We keep a pointer into the adjacency list of each vertex so that we do not start to traverse the list of adjacent vertices from the beginning each time.

```
v \longrightarrow u1(marked) \rightarrow u2(unmarked) \rightarrow u3(unmarked)
currUnmarkedAdj
```

Pseudocode for breadth-first search starting from vertex s

Pseudocode for DFS

```
s.marked = true;
Stack S = new Stack();
S.push(s);
while(! S.isempty()){
    v = S.peek();
    u = firstUnmarkedAdj(v);
    if (u == null) S.pop();
    else {
        u.marked = true;
        S.push(u);
    }
}
```

Space Complexity of BFS and DFS

• Need a queue/stack of size |V| (the number of vertices). Space complexity O(V).

Time Complexity of BFS and DFS

- In terms of the number of vertices V: two nested loops over V, hence $O(V^2)$.
- More useful complexity estimate is in terms of the number of edges. Usually, the number of edges is less than V².

Time complexity of BFS

Time complexity of BFS

Time complexity of BFS

Time complexity of BFS

Adjacency lists: V E v0: {v1,v2} |E0| = 2 v1: {v3} |E1| = 1 v2: {v3} |E2| = 1 v3: {} |E3| = 0 Total number of steps: |V| + |E0| + |E1| + |E2| + |E3| = |V| + |E|

Complexity of breadth-first search

- Assume an adjacency list representation, V is the number of vertices, E the number of edges.
- Each vertex is enqueued and dequeued at most once.
- Scanning for all adjacent vertices takes O(|E|) time, since sum of lengths of adjacency lists is |E|.
- Gives a O(|V|+|E|) time complexity.

Complexity of depth-first search

- Each vertex is pushed on the stack and popped at most once.
- For every vertex we check what the next unvisited neighbour is.
- In our implementation, we traverse the adjacency list only once. This gives $O(|V| \! + \! |E|)$ again.