
1

Plan

Previous lecture:

• Depth-first and breadth-first search

• Using DFS to detect cycles in directed graphs

• Complexity of breadth-first search

• Complexity of depth-first search

This lecture:

• Topological sort (also cycle detection)

• Dijkstra’s algorithm (if I have time)

Topological Sort

• Given a directed acyclic graph, produce a linear sequence
of vertices such that for any two vertices u and v, if there is
an edge from u to v than u is before v in the sequence.

Topological Sort

• Input to the algorithm: directed acyclic graph

• Output: a linear sequence of vertices such that for any two
vertices u and v, if there is an edge from u to v than u is
before v in the sequence.

• Useful to think of this as: edges correspond to
dependencies (pre-requisites), and a vertex could not
precede its pre-requisites in the sequence.

Example: building a house

foundations walls

roof

windows

plumbing

decorating

Foundations-Walls-Roof-Windows-Plumbing-Decorating

Possible sequence:

Applications

• Planning and scheduling.

• The algorithm can also be modified to detect cycles.

Topological Sort algorithm

• Create an array of length equal to the number of vertices.
• While the number of vertices is greater than 0, repeat:

• Find a vertex with no incoming edges (“no pre-
requisites”).

• Put this vertex in the array.
• Delete the vertex from the graph.

• Note that this destructively updates a graph; often this is a
bad idea, so make a copy of the graph first and do
topological sort on the copy.

2

Example:

foundations walls

roof

windows

plumbing

decorating

(Initially empty)

Array for the linear sequence: size 6

Example:

walls

roof

windows

plumbing

decorating

Foundations

Array for the linear sequence: size 6

Example:

roof

windows

plumbing

decorating

Foundations-Walls

Array for the linear sequence: size 6

Example:

windows

plumbing

decorating

Foundations-Walls-Roof

Array for the linear sequence: size 6

Example:

plumbing

decorating

Foundations-Walls-Roof-Windows

Array for the linear sequence: size 6

Example:

decorating

Foundations-Walls-Roof-Windows-Plumbing

Array for the linear sequence: size 6

3

Example:

Foundations-Walls-Roof-Windows-Plumbing-Decorating

Array for the linear sequence: size 6

Cycle detection with topological
sort

• What happens if we run topological sort on a cyclic graph?

• There will be either no vertex with 0 prerequisites to begin
with, or at some point in the iteration.

• If we run a topological sort on a graph and there are
vertices left undeleted, the graph contains a cycle.

Example: building a house with a
vicious circle

foundations walls

roof

windows

plumbing

decorating

Plumbing depends on decorating and decorating on plumbing

Example: building a house with a
vicious circle

walls

roof

windows

plumbing

decorating

Example: building a house with a
vicious circle

roof

windows

plumbing

decorating

Example: building a house with a
vicious circle

windows

plumbing

decorating

4

Example: building a house with a
vicious circle

plumbing

decorating

Stuck!

Why does it work?

• Topological sort: a vertex cannot be removed before all its
prerequisites have been removed. So it cannot be inserted
in the array before its prerequisite.

• Cycle detection: in a cycle, a vertex is its own prerequisite.
So it can never be removed.

Greedy graph algorithms

So far:

• Introduction to graphs

• Adjacency lists and adjacency matrices

• Breadth-first search and depth-first search

• Topological sort

Today: greedy algorithms in general and
greedy graph algorithms in particular

Shortest path

• Find the shortest route between two vertices
u and v.

• It turns out that we can just as well compute
shortest routes to ALL vertices reachable
from u (including v). This is called single-
source shortest path problem for weighted
graphs, and u is the source.

Dijkstra’s Algorithm

• An algorithm for solving the single-source
shortest path problem.

• The first version of the Dijkstra's algorithm
(traditionally given in textbooks) returns not
the actual path, but a number - the shortest
distance between u and v.

• (Assume that weights are distances, and the length
of the path is the sum of the lengths of edges.)

Example

• Dijkstra’s algorithm should return 6 for the
shortest path between A and B:

A

C D

B10

2

22

5

Dijkstra’s algorithm

To find the shortest paths (distances) from s:

• keep a priority queue PQ of vertices to be
processed

• keep an array with current known shortest
distances from s to every vertex (initially
set to be infinity for all but s and 0 for s)

• order the queue so that the vertex with the
shortest distance is at the front.

Dijkstra’s algorithm

Loop until there are vertices in the queue PQ:

• dequeue a vertex u
• recompute shortest distances for all vertices

in the queue as follows: if there is an edge
from u to a vertex v in PQ and the current
shortest distance to v is greater than
distance(s,u) + weight(u,v) then replace
distance(s,v) with distance (s,u) +
weight(u,v).

Computing the shortest distance

If the shortest distance from s to u is
distance(s,u) and the weight of the edge
between u and v is weight(u,v), then the
current shortest distance from s to v is
distance(s,u) + weight(u,v).

s u v
weight(u,v)distance(s,u)

Example

• Distances: (A,0), (B,INF), (C,INF), (D,INF)

• PQ = {A,B,C,D}

A

C D

B10

2

22

Example (dequeue A)

• Distances: (A,0), (B,INF), (C,INF), (D,INF)

• PQ = {B,C,D}

A

C D

B10

2

22

Example (recompute distances)

• Distances: (A,0), (B,10), (C,2), (D,INF)

• PQ= {C,B,D}

A

C D

B10

2

22

6

Example (dequeue C)

• Distances: (A,0), (B,10), (C,2), (D,INF)

• PQ = {B,D}

A

C D

B10

2

22

Example (recompute distances)

• Distances: (A,0), (B,10), (C,2), (D,4)

• PQ = {D,B}

A

C D

B10

2

22

Example (dequeue D)

• Distances: (A,0), (B,10), (C,2), (D,4)

• PQ = {B}

A

C D

B10

2

22

Example (recompute distances)

• Distances: (A,0), (B,6), (C,2), (D,4)

• PQ = {B}

A

C D

B10

2

22

Example (dequeue B)

• Distances: (A,0), (B,6), (C,2), (D,4)

• PQ = {}

A

C D

B10

2

22

Pseudocode for D’s Algorithm

• INF is supposed to be greater than any
number

• dist : array holding shortest distances from
source s

• PQ : priority queue of unvisited vertices
prioritised by shortest recorded distance
from source

• PQ.reorder() reorders PQ if the values in
dist change.

7

Pseudocode for Dijkstra’s
Algorithm

for(each v in V){
 dist[v] = INF;
 dist[s] = 0;
}

PriorityQueue PQ = new PriorityQueue();
// insert all vertices in PQ,
// in reverse order of dist[]

// values

Pseudocode for D’s Algorithm

while (! PQ.isempty()){

 u = PQ.dequeue();

 for(each v in PQ adjacent to u){

 if(dist[v] > (dist[u]+weight(u,v)){

 dist[v] = (dist[u]+weight(u,v));

 }
 }

 PQ.reorder();

}
return dist;

Modified algorithm

How to make Dijkstra’s algorithm to return
the path itself, not just the distance:

• In addition to distances, maintain a path (list
of vertices) for every vertex

• In the beginning paths are empty
• When assigning

dist(s,v)=dist(s,u)+weight(u,v) also assign
path(v)=path(u).

• When dequeuing a vertex, add it to its path.

Example

• Distances and paths:

 (A,0,{}), (B,INF,{}), (C,INF{}), (D,INF,{})

A

C D

B10

2

22

Dequeue A, recompute paths

• Distances and paths:

 (A,0,{A}), (B,10,{A}), (C,2,{A}), (D,INF,{})

A

C D

B10

2

22

Dequeue C, recompute paths

• Distances and paths:

 (A,0,{A}), (B,10,{A}), (C,2,{A,C}), (D,INF,{})

A

C D

B10

2

22

8

Dequeue C, recompute paths

• Distances and paths:

 (A,0,{A}), (B,10,{A}), (C,2,{A,C}), (D,4,{A,C})

A

C D

B10

2

22

Dequeue D, recompute paths

• Distances and paths:

 (A,0,{A}), (B,6,{A,C,D}), (C,2,{A,C}),
(D,4,{A,C,D})

A

C D

B10

2

22

Dequeue B, recompute paths

• Distances and paths:

 (A,0,{A}), (B,6,{A,C,D,B}), (C,2,{A,C}),
(D,4,{A,C,D})

A

C D

B10

2

22

Greedy algorithms

• No long-term strategy: maximise profit at
the moment (make locally optimal choices).

• If you need to minimise distance, pick the
closest vertex at each step.

• If you need to minimise some other
property, pick a step with the minimal cost
with respect to that property.

Greedy Algorithms

• Dijkstra's algorithm: pick the vertex to
which there is the shortest path currently
known at the moment.

• For Dijkstra's algorithm, this also turns out
to be globally optimal: can show that a
shorter path to the vertex can never be
discovered.

• There are also greedy strategies which are
not globally optimal.

Example: non-optimal greedy
algorithm

• Problem: given a number of coins, count the
change in as few coins as possible.

• Greedy strategy: start with the largest coin
which is available; for the remaining
change, again pick the largest coin; and so
on.

9

Example

Coins: 2x50p, 4x20p, 10x1p

Count 80p:

80p = 50 +

Example

Coins: 2x50p, 4x20p, 10x1p

Count 80p:

80p = 50 + 20 +

Example

Coins: 2x50p, 4x20p, 10x1p

Count 80p:

80p = 50 + 20 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
+ 1 + 1

Could have counted 20 + 20 + 20 +20

Non-optimal algorithm (does not give the
optimal solution.)

Optimality of Dijkstra's algorithm

So, why is Dijkstra’s algorithm optimal (gives
the shortest path)?

Let us first see where it could go wrong.

What the algorithm does

• For every vertex in the priority queue, we
keep updating the current distance
downwards, until we remove the vertex
from the queue.

• After that the shortest distance for the
vertex is set.

• What if a shorter path can be discovered
later?

Optimality proof

• Base case: the shortest distance to the start
node is set correctly (0)

• Inductive step: assume that the shortest
distances are set correctly for the first n
vertices removed from the queue. Show that
it will also be set correctly for the n+1st
vertex.

10

Optimality proof

• Assume that the n+1st vertex is u. It is at the
front of the priority queue and it’s current
known shortest distance is dist(s,u). We
need to show that there is no path in the
graph from s to u with the length smaller
than dist(s,u).

Optimality proof

• Proof by contradiction: assume there is such
a (shorter) path:

s u
v1 v2

Optimality proof

• Here the vertices from s to v1 have correct
shortest distances (inductive hypothesis)
and v2 is still in the priority queue.

s u
v1 v2

Optimality proof

• So dist(s,v1) is indeed the shortest path
from s to v1. Current distance to v2 is
dist(s,v2)=dist(s,v1)+weight(v1,v2)

s u
v1 v2

Optimality proof

• If v2 is still in the priority queue, then
dist(s,v1)+weight(v1,v2) >= dist(s,u)

s u
v1 v2

Optimality proof

• But then the path going through v1 and v2
cannot be shorter than dist(s,u). QED

s u
v1 v2

11

Minimal spanning tree

• Input: connected, undirected, weighted
graph

• Output: a tree which connects all vertices in
the graph using only the edges present in
the graph and is minimal in the sense that
the sum of weights of the edges is the
smallest possible

Example: graph

10

12
8

6

6

6

3

A

B C
D

E

Example: MST (cost 23)

10

12
8

6

6

6

3

A

B C
D

E

Example: another MST (cost 23)

10

12
8

6

6

6

3

A

B C
D

E

Example: not MST (cost 28)

10

12
8

6

6

6

3

A

B C
D

E

Why MST is a tree

• We just need to keep the resulting graph
connected.

• For every vertex need only one in-coming
edge (if there are two, one can be removed
and the graph is still connected).

• A graph where every vertex has only one
in-coming edge is a tree.

12

Prim’s algorithm

To construct an MST:

• Pick any vertex M

• Choose the shortest edge from M to any
other vertex N

• Add edge (M,N) to the MST
• Continue to add at every step the shortest

edge from a vertex in MST to a vertex
outside, until all vertices are in MST

Greedy algorithm

• Note that Prim’s algorithm is also greedy:
just adds a shortest edge without worrying
about the overall structure

• It is also optimal: see Shaffer Theorem 7.1
(p.217)

Example

10

12
8

6

6

6

3

A

B C
D

E

Example

10

12
8

6

6

6

3

A

B C
D

E

Example

10

12
8

6

6

6

3

A

B C
D

E

Example

10

12
8

6

6

6

3

A

B C
D

E

13

Example

10

12
8

6

6

6

3

A

B C
D

E

Example

10

12
8

6

6

6

3

A

B C
D

E

Further reading

• More on graph algorithms: Shaffer,
Chapter 7, or any other ADS textbook
(Floyd’s and Kruskal’s algorithms).

