## Plan

## Topological Sort

- Given a directed acyclic graph, produce a linear sequence of vertices such that for any two vertices $u$ and $v$, if there is an edge from u to v than u is before v in the sequence.
- Depth-first and breadth-first search
- Using DFS to detect cycles in directed graphs
- Complexity of breadth-first search
- Complexity of depth-first search

This lecture:

- Topological sort (also cycle detection)
- Dijkstra's algorithm (if I have time)


## Topological Sort

- Input to the algorithm: directed acyclic graph
- Output: a linear sequence of vertices such that for any two vertices $u$ and $v$, if there is an edge from $u$ to $v$ than $u$ is before v in the sequence.
- Useful to think of this as: edges correspond to dependencies (pre-requisites), and a vertex could not precede its pre-requisites in the sequence.

Example: building a house


Possible sequence:
Foundations-Walls-Roof-Windows-Plumbing-Decorating

## Applications

## Topological Sort algorithm

- Planning and scheduling.
- The algorithm can also be modified to detect cycles.



## Example:



Array for the linear sequence: size 6

## Example:

Foundations-Walls
Foundations-Walls-Roof


| Example: |
| :---: |
|  |
| Array for the linear sequence: size 6 |
| Foundations-Walls-Roof-Windows-Plumbing-Decorating |

## Cycle detection with topological

 sort- What happens if we run topological sort on a cyclic graph?
- There will be either no vertex with 0 prerequisites to begin with, or at some point in the iteration.
- If we run a topological sort on a graph and there are vertices left undeleted, the graph contains a cycle.


Example: building a house with a vicious circle


Example: building a house with a
Example: building a house with a vicious circle



## Why does it work?

- Topological sort: a vertex cannot be removed before all its prerequisites have been removed. So it cannot be inserted in the array before its prerequisite.
- Cycle detection: in a cycle, a vertex is its own prerequisite. So it can never be removed.


## Greedy graph algorithms

So far:

- Introduction to graphs
- Adjacency lists and adjacency matrices
- Breadth-first search and depth-first search
- Topological sort

Today: greedy algorithms in general and

## Shortest path

- Find the shortest route between two vertices u and v.
- It turns out that we can just as well compute shortest routes to ALL vertices reachable from $u$ (including v ). This is called singlesource shortest path problem for weighted graphs, and $u$ is the source.


## Dijkstra's Algorithm

- An algorithm for solving the single-source shortest path problem.
- The first version of the Dijkstra's algorithm (traditionally given in textbooks) returns not the actual path, but a number - the shortest distance between $u$ and $v$.
- (Assume that weights are distances, and the length of the path is the sum of the lengths of edges.)


## Example

- Dijkstra's algorithm should return 6 for the shortest path between A and B:



## Dijkstra's algorithm

To find the shortest paths (distances) from s:

- keep a priority queue PQ of vertices to be processed
- keep an array with current known shortest distances from s to every vertex (initially set to be infinity for all but $s$ and 0 for $s$ )
- order the queue so that the vertex with the shortest distance is at the front.


## Dijkstra's algorithm

Loop until there are vertices in the queue PQ :

- dequeue a vertex u
- recompute shortest distances for all vertices in the queue as follows: if there is an edge from $u$ to a vertex $v$ in PQ and the current shortest distance to v is greater than distance $(\mathrm{s}, \mathrm{u})+$ weight $(\mathrm{u}, \mathrm{v})$ then replace distance ( $\mathrm{s}, \mathrm{v}$ ) with distance ( $\mathrm{s}, \mathrm{u}$ ) + weight( $u, v$ ).


## Computing the shortest distance

If the shortest distance from s to u is distance( $s, u$ ) and the weight of the edge between $u$ and $v$ is weight $(u, v)$, then the current shortest distance from $s$ to $v$ is distance ( $s, u$ ) + weight (u,v).
$\qquad$ weight(u,v)
S $\qquad$ - V

## Example

- Distances: (A,0), (B,INF), (C,INF), (D,INF)
- $\mathrm{PQ}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$



## Example (dequeue A)

- Distances: (A,0), (B,INF), (C,INF), (D,INF)
- $P Q=\{B, C, D\}$



## Example (recompute distances)

- Distances: (A,0), (B,10), (C,2), (D,INF)
- $\mathrm{PQ}=\{\mathrm{C}, \mathrm{B}, \mathrm{D}\}$



## Example (dequeue C)

- Distances: (A,0), (B, 10), (C,2), (D,INF)
- $\mathrm{PQ}=\{\mathrm{B}, \mathrm{D}\}$


Example (recompute distances)

- Distances: (A,0), (B,10), (C,2), (D,4)
- $\mathrm{PQ}=\{\mathrm{D}, \mathrm{B}\}$



## Example (dequeue D)

- Distances: (A,0), (B, 10), (C,2), (D,4)
- $\mathrm{PQ}=\{\mathrm{B}\}$



## Example (recompute distances)

- Distances: (A,0), (B,6), (C,2), (D,4)
- $\mathrm{PQ}=\{\mathrm{B}\}$



## Example (dequeue B)

- Distances: (A,0), (B,6), (C,2), (D,4)
- PQ = \{ $\}$



## Pseudocode for D's Algorithm

- INF is supposed to be greater than any number
- dist : array holding shortest distances from source s
- $P Q$ : priority queue of unvisited vertices prioritised by shortest recorded distance from source
- PQ.reorder() reorders PQ if the values in dist change.


## Pseudocode for Dijkstra's Algorithm

```
for(each v in V) {
    dist[v] = INF;
    dist[s] = 0;
}
PriorityQueue PQ = new PriorityQueue();
// insert all vertices in PQ,
// in reverse order of dist[]
// values
```


## Pseudocode for D's Algorithm

```
while (! PQ.isempty()){
    u = PQ.dequeue();
    for(each v in PQ adjacent to u) {
        if(dist[v] > (dist[u]+weight (u,v)) {
            dist[v] = (dist[u]+weight (u,v));
        }
    }
    PQ.reorder();
}
return dist;
```


## Modified algorithm

How to make Dijkstra's algorithm to return

## Example

- Distances and paths:
(A,0,\{ \}), (B,INF, $\}),(\mathrm{C}, \mathrm{INF}\{ \}),(\mathrm{D}, \mathrm{INF},\{ \})$

- In addition to distances, maintain a path (list of vertices) for every vertex
- In the beginning paths are empty
- When assigning
$\operatorname{dist}(\mathrm{s}, \mathrm{v})=\operatorname{dist}(\mathrm{s}, \mathrm{u})+$ weight $(\mathrm{u}, \mathrm{v})$ also assign $\operatorname{path}(\mathrm{v})=\mathrm{path}(\mathrm{u})$.
- When dequeuing a vertex, add it to its path.


## Dequeue A, recompute paths

- Distances and paths:
(A, $0,\{\mathrm{~A}\}),(\mathrm{B}, 10,\{\mathrm{~A}\}),(\mathrm{C}, 2,\{\mathrm{~A}\}),(\mathrm{D}, \mathrm{INF},\{ \})$



## Dequeue C, recompute paths

- Distances and paths:
(A, $0,\{\mathrm{~A}\}),(\mathrm{B}, 10,\{\mathrm{~A}\}),(\mathrm{C}, 2,\{\mathrm{~A}, \mathrm{C}\}),(\mathrm{D}, \mathrm{INF},\{ \})$



## Dequeue C, recompute paths

- Distances and paths:
(A, $0,\{\mathrm{~A}\}),(\mathrm{B}, 10,\{\mathrm{~A}\}),(\mathrm{C}, 2,\{\mathrm{~A}, \mathrm{C}\}),(\mathrm{D}, 4,\{\mathrm{~A}, \mathrm{C}\})$



## Dequeue D, recompute paths

- Distances and paths:
(A,0,\{A\}), (B,6,\{A,C,D\}), (C,2,\{A,C\}), (D, $4,\{\mathrm{~A}, \mathrm{C}, \mathrm{D}\})$



## Dequeue B, recompute paths

- Distances and paths:
(A,0,\{A\}), (B,6,\{A,C,D,B\}), (C,2,\{A,C\}),
(D,4,\{A,C,D\})



## Greedy algorithms

- No long-term strategy: maximise profit at the moment (make locally optimal choices).
- If you need to minimise distance, pick the closest vertex at each step.
- If you need to minimise some other property, pick a step with the minimal cost with respect to that property.


## Greedy Algorithms

- Dijkstra's algorithm: pick the vertex to which there is the shortest path currently known at the moment.
- For Dijkstra's algorithm, this also turns out to be globally optimal: can show that a shorter path to the vertex can never be discovered.
- There are also greedy strategies which are not globally optimal.

Example: non-optimal greedy algorithm

- Problem: given a number of coins, count the change in as few coins as possible.
- Greedy strategy: start with the largest coin which is available; for the remaining change, again pick the largest coin; and so on.


## Example

Coins: $2 \times 50 \mathrm{p}, 4 \mathrm{x} 20 \mathrm{p}, 10 \mathrm{x} 1 \mathrm{p}$
Count 80p:
$80 \mathrm{p}=50+$

## Example

Coins: 2x50p, 4x20p, 10x1p
Count 80p:
$80 \mathrm{p}=50+20+$

## Example

Coins: $2 \times 50 \mathrm{p}, 4 \times 20 \mathrm{p}, 10 \times 1 \mathrm{p}$

## Optimality of Dijkstra's algorithm

So, why is Dijkstra's algorithm optimal (gives the shortest path)?
$80 \mathrm{p}=50+20+1+1+1+1+1+1+1+1$ $+1+1$
Could have counted $20+20+20+20$
Non-optimal algorithm (does not give the optimal solution.)

Let us first see where it could go wrong.

## What the algorithm does

- For every vertex in the priority queue, we


## Optimality proof

- Base case: the shortest distance to the start node is set correctly (0)
keep updating the current distance downwards, until we remove the vertex
- Inductive step: assume that the shortest from the queue.
- After that the shortest distance for the distances are set correctly for the first n vertices removed from the queue. Show that vertex is set. it will also be set correctly for the $\mathrm{n}+1$ st
- What if a shorter path can be discovered later?


## Optimality proof

- Assume that the $n+1$ st vertex is $u$. It is at the front of the priority queue and it's current known shortest distance is dist( $\mathrm{s}, \mathrm{u}$ ). We need to show that there is no path in the graph from s to u with the length smaller than $\operatorname{dist}(\mathrm{s}, \mathrm{u})$.


## Optimality proof

- Proof by contradiction: assume there is such a (shorter) path:
$\qquad$


## Optimality proof

- Here the vertices from sto v1 have correct shortest distances (inductive hypothesis) and v 2 is still in the priority queue.
v1 v2
s ------------ $\longrightarrow-------$ u


## Optimality proof

- So dist( $\mathrm{s}, \mathrm{v} 1$ ) is indeed the shortest path from s to v 1 . Current distance to v 2 is $\operatorname{dist}(\mathrm{s}, \mathrm{v} 2)=\operatorname{dist}(\mathrm{s}, \mathrm{v} 1)+$ weight $(\mathrm{v} 1, \mathrm{v} 2)$
v1 v2
s -----------. $\longrightarrow$--------- u


## Optimality proof

- If v2 is still in the priority queue, then $\operatorname{dist}(\mathrm{s}, \mathrm{v} 1)+$ weight $(\mathrm{v} 1, \mathrm{v} 2)>=\operatorname{dist}(\mathrm{s}, \mathrm{u})$
v1 v2
s ------------ $\longrightarrow$--------- u


## Optimality proof

- But then the path going through v1 and v2 cannot be shorter than dist(s,u). QED
s------------ $\longrightarrow-------$ u


## Minimal spanning tree

- Input: connected, undirected, weighted graph
- Output: a tree which connects all vertices in the graph using only the edges present in the graph and is minimal in the sense that the sum of weights of the edges is the smallest possible

Example: MST (cost 23)
A


## Example: graph

A


Example: another MST (cost 23)

A


Example: not MST (cost 28)


## Why MST is a tree

- We just need to keep the resulting graph connected.
- For every vertex need only one in-coming edge (if there are two, one can be removed and the graph is still connected).
- A graph where every vertex has only one in-coming edge is a tree.


## Prim's algorithm

To construct an MST:

- Pick any vertex M
- Choose the shortest edge from M to any other vertex N
- Add edge (M,N) to the MST
- Continue to add at every step the shortest edge from a vertex in MST to a vertex outside, until all vertices are in MST



## Greedy algorithm

- Note that Prim's algorithm is also greedy: just adds a shortest edge without worrying about the overall structure
- It is also optimal: see Shaffer Theorem 7.1 (p.217)


## Example

A



## Further reading

- More on graph algorithms: Shaffer, Chapter 7, or any other ADS textbook (Floyd's and Kruskal's algorithms).

