
1

Heaps

• Definition of a heap

• What are they for: priority queues

• Insertion and deletion into heaps

• Implementation of heaps

• Heap sort
Not to be confused with: heap as the portion of

computer memory available to a programmer with
new in Java

Complete Binary Trees

• Perfectly balanced,
except possibly at the
lowest level, and

• All the leaves at the
lowest level are as far
to the left as possible
(it is filled from left to
right level by level)

A

B C

E FD

Complete Binary Trees

• NOT A COMPLETE
BINARY TREE A

B C

E FD

Complete Binary Trees

• NOT A COMPLETE
BINARY TREE A

B

D

Definition of a Heap

A heap is a complete binary tree with the
following ordering property:

The value of every parent node is greater than
or equal to the values of either of its
daughter nodes.

The largest node is always the root.

Example
30

1316

6 5 7 11

3 4

2

Priority Queues

• A priority queue is a queue where the items
are ordered with respect to their priority.

• If two items have the same priority, than the
item which arrived first is removed first.

• A priority queue can be implemented as an
ordered vector, but it is an overkill: total
order is not necessary, it is enough to
always have the largest item at the head of
the queue.

Implementation using a heap

• Implement priority queue as a heap.

• Remove root node for dequeueing.

• Insert new node for enqueuing.

Heap ADT

• Logical domain : complete binary trees
satisfying the heap property

• Methods:
• insert(item)

Pre: tree is a heap
Post: item inserted into tree, preserving heap
property

Heap methods continued

• remove()
Pre: tree is a non empty heap
Post: root node is removed and value returned,
while preserving heap property of tree

• heapify(array)
Post: unordered array converted to heap.

We need the latter method for heapsort.

Heap Implementation

• Since a heap is a complete binary tree, can
use an array or Vector implementation
which is suitable for all complete binary
trees

• Root at position 0.
• Daughters of node at position i in positions

2i+1 and 2i+2.
• Parent of node at position i occupies (i-1)/2

(round towards 0).

Example

30

1316

6 5 7 11

3 4

30 16 13 6 5 7 11 3 4

3

Heap Insertion

To add a new item to a heap:
• Add it as a leaf node in the next available

position.

• This is likely to destroy heap property.

• If new leaf has greater value than its parent,
swap values round.

• Continue swapping new value upwards until it
is at a position where it is smaller than its
parent.

Example: insert 20
30

1316

6 5 7 11

3 4

Insert in the next available position:

30

1316

6 5 7 11

3 4 20

Bubble 20 up to correct position:

30

1316

6

5

7 11

3 4

20

Bubble 20 up to correct position:

30

13

166

5

7 11

3 4

20

Deleting the Root from a Heap

• Replace root node by last available leaf.
This may destroy the heap property

• Find which of (new) root's daughters has
largest value.

• If new root smaller than largest daughter,
swap values.

• Continue swapping new root value
downwards until it is bigger than both its
daughters.

4

Example: delete 30
30

1316

6 5 7 11

3 4

Replace 30 by 4:

4

1316

6 5 7 11

3

Bubble 4 down:

4 13

16

6 5 7 11

3

Bubble 4 down:

6 13

16

4 5 7 11

3

Heapifying an Array

• Start off with unordered array containing N elements, and
convert it to an array representing a heap.

• All leaf nodes (positions >= N/2) trivially satisfy heap
property. Start with parents of leaf nodes.

• Look at each parent in turn.

• If necessary, bubble parent value down.

• Then move to next level up, and look at each parent there.

• Bubble parent value down if necessary.

• Continue until you reach root node.

Example

20 30 40 62 16 7 77

0 1 2 3 4 5 6

0

1

3

2

64 5

leaves

5

Look at parent of 7 and 77:

20 30 40 62 16 7 77

0 1 2 3 4 5 6

0

1

3

2

64 5

leaves

Needs bubbled down!

20 30 40 62 16 7 77

0 1 2 3 4 5 6

0

1

3

2

64 5

leaves

Needs bubbled down!

20 30 77 62 16 7 40

0 1 2 3 4 5 6

0

1

3

2

64 5

leaves

Look at parent of 62 and 16:

20 30 77 62 16 7 40

0 1 2 3 4 5 6

0

1

3

2

64 5

leaves

Needs bubbled down!

20 30 77 62 16 7 40

0 1 2 3 4 5 6

0

1

3

2

64 5

leaves

Needs bubbled down!

20 62 77 30 16 7 40

0 1 2 3 4 5 6

0

1

3

2

64 5

leaves

6

Look at parent of 62 and 77:

20 62 77 30 16 7 40

0 1 2 3 4 5 6

0

1

3

2

64 5

leaves

Needs bubbled down!

20 62 77 30 16 7 40

0 1 2 3 4 5 6

0

1

3

2

64 5

leaves

Needs bubbled down!

77 62 20 30 16 7 40

0 1 2 3 4 5 6

0

1

3

2

64 5

leaves

Needs bubbled down!

77 62 20 30 16 7 40

0 1 2 3 4 5 6

0

1

3

2

64 5

leaves

Needs bubbled down!

77 62 40 30 16 7 20

0 1 2 3 4 5 6

0

1

3

2

64 5

leaves

Needs bubbled down!

77 62 40 30 16 7 20

0 1 2 3 4 5 6

77

62

30

40

2016 7

leaves

7

Complexity Results

• Insertion and deletion performance dominated by
number of swaps necessary to bubble items up or
down.

• Worst case number of swaps = depth of tree =
log2 N, where N is number of nodes in tree.

• Hence, insertion and deletion is O(log N).

• To heapify, we make N/2 calls to bubbleDown
method.

• Hence O(N log N).

Heap Sort

• Convert unordered array of size N to heap of size
N.

• Successively remove root node from heap, and
place at position N - 1 in array.

• This reduces size of heap by 1, and so decrement
N by 1.

• Continue removing root node from heap of size N'
and placing at position N' - 1.

• Until heap is emptied.

Complexity of Heap Sort

• Heapifying array is O(N log N).

• Removing root from heap is O(log N).

• We have to remove root N times.

• Hence removal of all roots is O(N log N).

• Hence heap sort is O(N log N).

Summary

• Heaps: Complete binary trees where every parent
is larger than its daughters.

• Implemented as vectors.

• Bubbling elements up/down to insert/remove.

• Heapifying arrays.

• Heaps as a way of implementing priority queues
(e.g. printer queues).

• Heap sort.

