Heaps

* Definition of a heap

» What arethey for: priority queues
* Insertion and deletion into heaps
* Implementation of heaps

* Heap sort

Not to be confused with: heap asthe portionof
computer memory available to a programmer with
newin Java

Complete Binary Trees

* Perfectly balanced,
except possibly at the
lowest level, and

 All theleaves at the
lowest level are asfar
to the left as possible
(itisfilled from left to
right level by level)

A

B/\C
/A

Complete Binary Trees

« NOT A COMPLETE
BINARY TREE A

B/\C
A

Complete Binary Trees

Definition of a Heap

A heap is a complete binary tree with the
following ordering property:

The value of every parent nodeis greater than
or equal to the values of either of its
daughter nodes.

The largest node is always the root.

« NOT A COMPLETE
BINARY TREE /A
B
D
Example
16 13
6 7 11

Priority Queues

* A priority queueis a queue where the items
are ordered with respect to their priority.

If two items have the same priority, than the
item which arrived first is removed first.

A priority queue can be implemented as an
ordered vector, but it is an overkill: total
order is not necessary, it isenough to
always have the largest item at the head of
the queue.

Implementation using a heap

e Implement priority queue as a heap.
» Remove root node for degqueueing.
« Insert new node for enqueuing.

Heap ADT

Logical domain : complete binary trees
satisfying the heap property
Methods:
einsert(itemn
Pre: treeisaheap
Post: item inserted into tree, preserving heap
property

Heap methods continued

e renove()
Pre: tree isanon empty heap
Post: root node is removed and value returned,
while preserving heap property of tree
* heapi fy(array)
Post: unordered array converted to heap.
We need the latter method for heapsort.

Heap Implementation

* Since a heap isacomplete binary tree, can

use an array or Vector implementation

which is suitable for all complete binary

trees

Root at position 0.

Daughters of node at position i in positions

2i+1and 2i+2.

* Parent of node at position i occupies (i-1)/2
(round towards 0).

Example

13 [3016]13[6]5] 7]11] 3] 4]

Heap Insertion

To add anew item to a heap:
* Add it asaleaf nodein the next available
position.
« Thisislikely to destroy heap property.
« If new leaf has greater value than its parent,
swap values round.

« Continue swapping new value upwards until it
isat aposition whereit is smaller than its
parent.

Example: insert 20

30

o
3
~
=
=

Insert in the next available position:

o
3]
~
=
=

Bubble 20 up to correct position:

30

o
N
=]
~
=
=

Bubble 20 up to correct position:
30

20 13

2}
=
o

~

[uy

=

Deleting the Root from a Heap

Replace root node by last available leaf.
This may destroy the heap property

Find which of (new) root's daughters has
largest value.

If new root smaller than largest daughter,
swap values.

Continue swapping new root value
downwards until it is bigger than both its
daughters.

Example: delete 30

o
a
~
[uny
=

Replace 30 by 4:

o
[&)]
~
[N
[

Bubble 4 down:

16

Bubble 4 down:

16

Heapifying an Array

Start off with unordered array containing N elements, and
convert it to an array representing a heap.

All leaf nodes (positions >= N/2) trivially satisfy heap
property. Start with parents of leaf nodes.

Look at each parent in turn.

If necessary, bubble parent value down.

Then move to next level up, and look at each parent there.
Bubble parent value down if necessary.

Continue until you reach root node.

Example
0 1 2 3 4 5
20 30 40 62 16 7 7
0
1 2 leaves
3 45 6

Look at parent of 7 and 77:

Needs bubbled down!

0 1 2 3 4 5 6
20 | 30 | 40 | 62 | 16 | 7 | 77
0
1 2 leaves
3 45 6

Look at parent of 62 and 16:

0 1 2 3 4 5 6
20 30 40 62 16 7 77
0
1 2 leaves
3 45 6
Needs bubbled down!
0 1 2 3 4 5 6
20 30 77 62 16 7 40
0
1 2 leaves
3 45 6
Needs bubbled down!
0 1 2 3 4 5 6
20 30 77 62 16 7 40
0
1 2 leaves
3 45 6

0 1 2 3 4 5 6
20 |3 | 77|62 |16 7|40
0
1 2 leaves
3 45 6
Needs bubbled down!
0o 1 2 3 4 5 8
20 62 77 30 16 7 40
0
1 leaves
3 45

Look at parent of 62 and 77:

Needs bubbled down!

0 1 2 3 4 5 6

20 | 62 | 77 | 30 | 16 7 40

Needs bubbled down!

0 1 2 3 4 5 6

77 | 62 | 20 | 30 | 16 7 40

0 1 2 3 4 5 6
20 62 77 30 16 7 40
0
1 2 leaves
3 45 6
Needs bubbled down!
0 1 2 3 4 5 6
77 62 20 30 16 7 40
0
1 2 leaves
3 45 6
Needs bubbled down!
0 1 2 3 4 5 6
77 62 40 30 16 7 20
0
1 leaves
3 45

0
1 2 leaves
3 45 6

Needs bubbled down!

0 1 2 4 5 6
7 62 40 16 7 20

7
6: 10 leaves
3016 7 20

Complexity Results

Insertion and deletion performance dominated by
number of swaps necessary to bubble items up or
down.

Worst case number of swaps = depth of tree =
log, N, where N is number of nodesin tree.

Hence, insertion and deletion is O(log N).

To heapify, we make N/2 calls to bubbleDown
method.

Hence O(N log N).

Heap Sort

Convert unordered array of size N to heap of size
N.

Successively remove root node from heap, and
place at position N - 1 in array.

This reduces size of heap by 1, and so decrement
N by 1.

Continue removing root node from heap of size N'
and placing at position N' - 1.
Until heap is emptied.

Complexity of Heap Sort

Heapifying array isO(N log N).
Removing root from heap is O(log N).
We have to remove root N times.

Hence removal of all rootsis O(N log N).
Hence heap sort is O(N log N).

Summary

Heaps: Complete binary trees where every parent
islarger than its daughters.

Implemented as vectors.

Bubbling elements up/down to insert/remove.
Heapifying arrays.

Heaps as away of implementing priority queues
(e.g. printer queues).

Heap sort.

