
1

G5BADS: first lecture

• In this lecture:

• Practical information

• What are data structures

• What are algorithms

• Aims and objectives of the course

Information

• Lecturer: Natasha Alechina

• web page: www.cs.nott.ac.uk/~nza/G5BADS

• Two lectures a week, no practical sessions

• 75 % exam, 25 % coursework

• one formal coursework

• some informal coursework

Books

• Shaffer, A Practical Introduction to Data
Structures and Algorithm Analysis, Java Edition.

• Weiss, Data Structures and Algorithm Analysis in
Java.

• Lafore, Data Structures and Algorithms in Java.

• Aho et al., Data Structures and Algorithms.

• Cormen et al., Introduction to Algorithms.

More textbooks

• Sahni, Data Structures, Algorithms, and
Applications in Java

• Goodrich and Tamassia, Algorithm Design -
Foundations, Analysis and Internet Examples

• Any other standard textbook you can find.

• Also useful (but not sufficient on its own):
• Harel, Algorithmics: The spirit of computing.
• Bailey, D. A. Java Structures.

Prerequisites

• PRG (Java)
• MC1 (Mathematics for Computer Scientists 1)

Mathematical Background

• Proofs by induction
• Recursion
• Logarithms (for next lecture)

• If you forgot any of those, see Chapter 2
(Mathematical Preliminaries) of Shaffer’s book.

2

Knowledge of Java

• G51PRG (Introduction to Programming in Java)
is a prerequisite for the course.

• I will use Java code for implementation
examples.

• Coursework involves writing a Java program.
• If you don’t know Java, read Java tutorial in

Shaffer's book or the Sun online Java tutorial on
http://www.java.sun.com/tutorial (Getting
Started and Learning the Java Language).

Content of the Course

• In a way, continues PRG, but not about Java

• Data structure: a way data is organised in
computer memory; for example: array, list, list of
lists, tree, table...

• Algorithm: a sequence of steps which provides a
solution to a given problem. For example, an
explanation how to use a telephone book to find
somebody's telephone.

Abstraction

 Algorithms are independent of a particular
programming language. They get implemented in
a particular program. The course is about
analysing and solving problems on an abstract
level before starting to program.

Issues in Data Structures

• Even if we end up using ready-made Java API
structures, need to be able to decide when to use
what.

• dynamic/static

• how much space it uses

• how easy it is to search

• etc. (does it make solving the problem easier)

Issues in Algorithms

• how much memory/time does it use (efficiency)

• does it actually solve the problem (correctness)

Aims and Objectives

• Aim of the course: understanding of issues
involved in program design; good working
knowledge of common algorithms and data
structures

• Objectives:

• be able to identify the functionality required of the
program in order to solve the task at hand;

• design data structures and algorithms which
express this functionality in an efficient way;

• be able to evaluate a given implementation in
terms of its efficiency and correctness.

3

2000/2001 coursework problem

Given:
harray of spam patterns,e.g. [“Make money fast”,

“Make money in your spare time”, “Save money”]
han email message

Design and implement a time-efficient algorithm
which detects whether the message contains any
of the spam patterns.

Basically a string-matching problem.

Most common solution

for (int i = 0; i < patterns.length; i++) {
 if(message.indexOf(patterns[i]) != -1) {
 return true;
 }
}
return false;

In other words, iterate through the patterns calling
indexOf().

What does indexOf() do?

Most common solution

What does indexOf() do?

It scans the message from the beginning looking
for the first letter of the pattern. Then it starts
trying to match the rest of the pattern. If this
fails, it starts looking for the first letter again.

Most common solution

So, we have a nested loop:

for (int i = 0; i < patterns.length; i++) {
 for (int j = 0; j < message.length(); j++) {
 for (int k=0; k<patterns[i].length(); k++){

And in the worst case the outer loop iterates
through all patterns, middle loop each time
through all the message and inner loop through
almost all of the pattern. This method is a brute
force solution.

Illustration:

Let the message string be
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

and the pattern
aaaaaaaaaaaz

Optimisations

h Use a better algorithm e.g. Boyer-Moore
h Reduce the number of patterns by removing

superstrings
h Hash a list of patterns beginning with the same

character under the key corresponding to this
character. Scan the message once and for each
character in the message check if there are any
patterns starting with this character. If yes, try to
match all of them in turn.

4

Serious optimisation

h Create a tree for holding the patterns
h A variant of Aho-Corasick algorithm (?) from

Philippa Cowderoy’s program: The speed does
not depend on the number of patterns! (The size
of the tree does).

String matching using a tree

Patterns:
ant
can
car

String to check:
a can

Tree:
a c

n

t

match

a

n r

match match

String matching using a tree

h We move along the string
taking one character at a
time

h We maintain a list
plist of potential
matches (references to
edges). The list is of size
at most k (maximal
pattern length)

h For each character in the
string, update/remove
items in plist and add
at most one new item.

Tree:
a c

n

t

match

a

n r

match match

String: a can

String matching using a tree

h If we find character
char:
h if there is an edge from the

root labelled char we
add to plist a reference
to that edge (start
matching some pattern
from the beginning)

h for every item in plist,
if there is an edge from
there labelled char,
replace the item by
reference to that edge
(continue matching some
pattern)

Tree:
a c

n

t

match

a

n r

match match

String: a can

String matching using a tree

h If we find character
char:
h if there is no edge labelled
char from the item,
remove it (could not match
some pattern)

h finally, if reached
match, return true
(successfully matched
some pattern).

h When reached the end of
string, return false

Tree:
a c

n

t

match

a

n r

match match

String: a can

String matching using a tree

Trace:

 a can

Tree:
a c

n

t

match

a

n r

match match

String: a can

plist: 1

1

5

String matching using a tree

Trace:

 a can

Tree:
a c

n

t

match

a

n r

match match

String: a can

plist:

1

String matching using a tree

Trace:

 a can

Tree:
a c

n

t

match

a

n r

match match

String: a can

plist: 2

1 2

String matching using a tree

Trace:

 a can

Tree:
a c

n

t

match

a

n r

match match

String: a can

plist: 1,3

1 2
3

String matching using a tree

Trace:

 a can

Tree:
a c

n

t

match

a

n r

match match

String: a can

plist: 4,5

1 2
34

5

Lesson of the coursework

• The tree-based solution is more efficient
• In tests on large messages and large arrays of

patterns, the difference in performance was many
orders of magnitude (80ms vs 20 minutes)

• But can we analyse efficiency without testing,
from first principles?

• Subject of next lecture.

Two Search Algorithms for Ordered
Arrays

Linear search

linearSearch(array, item)

 for each index in the

 array:

 if value at index

 equals to item, return

 true

 not found - return false

Binary search

check value at the middle
index of the array

if item found, return true
if value at middle index
is greater than the item,
search the first half (if
empty return false)
else search the second
half (if empty return
false)

6

Two Search Algorithms

Binary search
Al-Biqami

Alechina

Allsebrook

Armitage

Ashman

Backhouse

Beesley

Beiley

Belavkin

Belfield

Benford

Blampied

Linear search:
Al-Biqami

Alechina

Allsebrook

Armitage

Ashman

Backhouse

Beesley

Beiley

Belavkin

Belfield

Benford

Blampied

Two Search Algorithms

Binary search
Al-Biqami

Alechina

Allsebrook

Armitage

Ashman

Backhouse

Beesley

Beiley

Belavkin

Belfield

Benford

Blampied

Linear search:
Al-Biqami

Alechina

Allsebrook

Armitage

Ashman

Backhouse

Beesley

Beiley

Belavkin

Belfield

Benford

Blampied

Two Search Algorithms

Binary search
Al-Biqami

Alechina

Allsebrook

Armitage

Ashman

Backhouse

Beesley

Beiley

Belavkin

Belfield

Benford

Blampied

Linear search:
Al-Biqami

Alechina

Allsebrook

Armitage

Ashman

Backhouse

Beesley

Beiley

Belavkin

Belfield

Benford

Blampied

Two Search Algorithms

Binary search
Al-Biqami

Alechina

Allsebrook

Armitage

Ashman

Backhouse

Beesley

Beiley

Belavkin

Belfield

Benford

Blampied

Linear search:
Al-Biqami

Alechina

Allsebrook

Armitage

Ashman

Backhouse

Beesley

Beiley

Belavkin

Belfield

Benford

Blampied

Two Search Algorithms

Binary search
Al-Biqami

Alechina

Allsebrook

Armitage

Ashman

Backhouse

Beesley

Beiley

Belavkin

Belfield

Benford

Blampied

Linear search:
Al-Biqami

Alechina

Allsebrook

Armitage

Ashman

Backhouse

Beesley

Beiley

Belavkin

Belfield

Benford

Blampied

Two Search Algorithms

Binary search
Al-Biqami

Alechina

Allsebrook

Armitage

Ashman

Backhouse

Beesley

Beiley
Belavkin

Belfield

Benford

Blampied

Linear search:
Al-Biqami

Alechina

Allsebrook

Armitage

Ashman

Backhouse

Beesley

Beiley

Belavkin

Belfield

Benford

Blampied

