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Efficiency of algorithms

• Algorithms

• Computational resources: time and space

• Best, worst and average case performance

• How to compare algorithms: machine-independent
measure of efficiency

• Growth rate

• Complexity measure O( )

Algorithms

• Algorithm is a well-defined sequence of steps
which leads to solving a certain problem.

Steps should be:

• concrete

• unambiguous

• there should be finitely many of them

Efficiency of algorithms

• How much time does it need

• How much memory (space) does it use

Binary search and linear search

• One seems faster than the other

• Can we characterise the difference more
precisely?

Best, worst and average case

Linear search:

• Best performance: the item we search for is in the
first position; examines one position

• Worst performance: item not in the  array or in the
last position; examines all positions

• Average performance (given that the item is in the
array): examines half of the array

Binary search

• Best case - item in the middle, one check

• Worst case - item in the last possible division; the
maximal number of times an array of length N can
be divided is log2 N

• Average case: item is found after performing half
of the possible number of divisions; ½ log2 N
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Which is more useful?

• For real time programming: the worst case

• For getting a general idea of running time: average
case; however, often difficult to establish

• For choosing between several available
algorithms: helps to know what is the best case
(maybe your data are in the best case format, for
example random).

How to compare

• Suppose we settle on comparing the worst case
performance of linear and binary search.

• Where do we start?

• Timing

• ...

Machine Independence

• The evaluation of efficiency should be as machine
independent as possible.

• For the time complexity of an algorithm,
• we count the number of basic operations the algorithm

performs

• we calculate how this number depends on the size of
the input.

• Space complexity: how much extra space is
needed in terms of the space used to represent the
input.

Some clarifications

• "Basic operations"?

• "Size of input"?

Size of input

• It is up to us to decide what is a useful parameter
to vary when we measure efficiency of an
algorithm.

• For algorithms searching a linear collection, the
natural choice for size of input is the number of
items in the collection which we are searching
(e.g. length of the array).

Size of input contd.

• Graph search: we may be interested in how time
grows when the number of nodes increases, or in
how time grows when the number of edges
increases.

• Sometimes we measure efficiency as a function of
several parameters: e.g. number nodes and edges
in a graph.
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Basic operations

• Basic operations are operations which take
constant time (at most time C for some constant
C).

• In other words, time required to perform the
operation does not grow with the size of the
operands, or is bounded by a constant.

Basic operations contd.

• If we are not sure how operations are
implemented, we have to exercise judgement: can
something be in principle implemented as a
constant time operation?

• For example, adding two 32-bit integers can be,
but adding a list of 32-bit integers can not: it is
going to take longer for a longer list.

Example

linearSearch(int[] arr, int value){

  for(int i=0; i<arr.length; i++)

    if(arr[i]==value) return true;

  return false;}

• Basic operations: comparing two integers;
incrementing i.  Constant time (at most some C)
spent at each iteration.

• Size of input: length of the array N.

• Time usage in the worst case: t(N)=C * N.

Binary search
binarySearch(int[] arr, int value){
   int left = 0;
   int right = arr.length - 1;
   int middle;
   while (right >= left) {
      middle  =  (left+right)/2;
      if (value == arr[middle]) return true;
      if (value < arr[middle]) right=middle-1;
      else left  =  middle+1;
      }
      return false;
}

Analysis of binary search

• Size of input = size of the array, say N

• Basic operations: assignments and comparisons

• Total number of steps: 3 assignments plus a block
of assignment, check and assignment repeated
log2 N times. Assume 3 assignments take at most
time C1 and at each iteration we spend at most
time C2.

• Total time = C1 + C2 log2 N

Rate of Growth

   We don't know how long the steps actually take;
we only know it is some constant time. We can
just lump all constants together and forget about
them.

What we are left with is the fact that the time in
sequential search grows linearly with the input,
while in binary search it grows logarithmically -
much slower.
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O() complexity measure

Big O notation gives an asymptotic upper bound
on the actual function which describes
time/memory usage of the algorithm.

   The complexity of an algorithm is O(f(N)) if there
exists a constant factor K and an input size N0
such that the actual usage of time/memory by the
algorithm on inputs greater than N0 is always less
than K f(N).

Upper bound example

t(N)=3+N

f(N)=2N

N0 N

t(N) is in O(N)
because for all N>3,
2N > 3+N

Here, N0 = 3 and
K=2.

In other words

An algorithm actually makes g(N) steps,

for example g(N) = C1 + C2log2N

there is an input size N' and

there is a constant K, such that

for all N > N' , g(N) <= K f(N)

then the algorithm is in O(f(N).

Binary search is O(log N):

C1 + C2log2N <= (C1 + C2 ) log2N for N > 2

Comments

Obviously lots of functions form an upper bound,
we try to find the closest.

We also want it to be a simple function, such as

constant O(1)

logarithmic  O(log N)

linear O(N)

quadratic, cubic, exponential...

Typical complexity classes

Algorithms which have the same O( ) complexity
belong to the same complexity class.

Common complexity classes:

• O(1) constant time: independent of input length

• O(log N) logarithmic: usually results from
splitting the task into smaller tasks, where the size
of the task is reduced by a constant fraction

• O(N) linear: usually results when a given constant
amount of processing is carried out on each
element in the input.

Contd.

• O(N log N) : splitting into subtasks and combining
the results later

• O(N2): quadratic. Usually arises when all pairs of
input elements need to be processed

• O(2N): exponential. Usually emerges from a brute-
force solution to a problem.
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Practical hints

• Find the actual function which shows how the
time/memory usage grows depending on the input
N.

• Omit all constant factors.

• If the function contains different powers of N,
(e.g. N4 + N3 + N2), leave only the highest power
(N4).

• Similarly, an exponential (2N) eventually
outgrows any polynomial in N.

Warning about O-notation

• O-notation only gives sensible comparisons of
algorithms when N is large
Consider two algorithms for same task:
Linear: g(N) = 1000 N is in O(N)
Quadratic: g'(N) = N2/1000 is in O(N2 )

• The quadratic one is faster for N < 1 000 000.

• Some constant factors are machine dependent, but
others are a property of the algorithm itself.

Summary

• Big O notation is a rough measure of how the
time/memory usage grows as the input size
increases.

• Big O notation gives a machine-independent
measure of efficiency which allows comparison of
algorithms.

•  It makes more sense for large input sizes. It
disregards all constant factors, even those intrinsic
to the algorithm.

Recommended reading

• Shaffer, Chapter 3 (note that we are not going to
use Ω and Θ notation in this course, only the
upper bound O()).

Informal coursework

Which statements below are true?
• If an algorithm has time complexity O(N2), it

always makes precisely N2 steps, where N is the
size of the input.

• An algorithm with time complexity O(N) is
always runs slower than an algorithm with time
complexity O(log2(N)), for any input.

• An algorithm which makes C1 log2(N) steps and
an algorithm which makes C2 log4(N) steps
belong to the same complexity class (C1 and C2
are constants).


