Efficiency of algorithms Algorithms

. Algorithms - Algorithm is awell-defined sequence of steps
. Computational resources: time and space which leads to solving a certain problem.

. Best, worst and average case performance Steps should be:
. How to compare algorithms: machine-independent - concrete

measure of efficiency . unambiguous
. Growthrate . there should be finitely many of them
. Complexity measure O()

Efficiency of algorithms Binary search and linear search
. How much time doesit need . One seems faster than the other
. How much memory (space) doesit use . Can we characterise the difference more
precisely?
Best, worst and average case Binary search

Linear search: . Best case - item in the middle, one check
. Best performance: theitem we search for isin the . Worst case - item in the last possible division; the

first position; examines one position maximal number of times an array of length N can
. Worst performance: item not in the array or inthe bedivided islog, N

last position; examines al positions . Average case: item isfound after performing half

. Average performance (given that theitem isin the of the possible number of divisions; ¥zlogz N

array): examines half of the array




Which is more useful ?

. For real time programming: the worst case

. For getting a general idea of running time: average
case; however, often difficult to establish

. For choosing between severd available
agorithms: helps to know what is the best case
(maybe your data are in the best case format, for
example random).

How to compare

. Suppose we settle on comparing the worst case

performance of linear and binary search.

. Where do we start?
. Timing

Machine Independence

. The evaluation of efficiency should be as machine
independent as possible.

. For the time complexity of an agorithm,

- we count the number of basic operations the algorithm
performs

- we caculate how this number depends on the size of
the input.

. Space complexity: how much extra spaceis
needed in terms of the space used to represent the
input.

Some clarifications

. "Basic operations'?
. "Sizeof input"?

Size of input

. Itisupto usto decide what is a useful parameter
to vary when we measure efficiency of an
algorithm.

. For algorithms searching a linear collection, the
natural choice for size of input is the number of
items in the collection which we are searching
(e.g. length of the array).

Size of input contd.

. Graph search: we may be interested in how time

grows when the number of nodes increases, or in
how time grows when the number of edges
increases.

. Sometimes we measure efficiency as a function of

several parameters: e.g. number nodes and edges
inagraph.




Basic operations

. Basic operations are operations which take
constant time (at most time C for some constant
C).

. In other words, time required to perform the
operation does not grow with the size of the
operands, or is bounded by a constant.

Basic operations contd.

. If we are not sure how operations are
implemented, we have to exercise judgement: can
something be in principle implemented as a
constant time operation?

. For example, adding two 32-bit integers can be,
but adding alist of 32-bit integers can not: it is
going to take longer for alonger list.

Example

i nearSearch(int[] arr, int value){
for(int i=0; i<arr.length; i++)
if(arr[i]==value) return true;
return false;}

. Basic operations: comparing two integers;
incrementing i. Constant time (at most some C)
spent at each iteration.

. Size of input: length of the array N.
. Time usage in the worst case: t(N)=C * N.

Binary search
bi narySearch(int[] arr, int value){

int left = 0;

int right = arr.length - 1;

int mddle;

while (right >= left) {
mddle = (left+right)/2;
if (value == arr[mddle]) return true;
if (value < arr[mddle]) right=niddle-1;
else left = niddle+l;

return fal se;

Analysis of binary search

. Size of input = size of the array, say N
. Basic operations:; assignments and comparisons

. Tota number of steps: 3 assignments plus a block
of assignment, check and assignment repeated
logzN times. Assume 3 assignments take at most
time C, and at each iteration we spend at most
time C,.

. Total time=C, + C, 092N

Rate of Growth

We don't know how long the steps actually take;
we only know it is some constant time. We can
just lump all constants together and forget about
them.

What we are |eft with is the fact that thetime in
sequential search grows linearly with the input,
while in binary search it grows logarithmically -
much slower.




O() complexity measure

Big O notation gives an asymptotic upper bound
on the actual function which describes
time/memory usage of the algorithm.

The complexity of an algorithmis O(f(N)) if there

Upper bound example
f(N)=2N

t(N)=3+N

t(N) isin O(N)
because for all N>3,

exists a constant factor K and an input size N, 2N > 3+N
such that the actual usage of time/memory by the Here. N. = 3 and
algorithm on inputs greater than N, is always less K=
than K f(N).
N, N
In other words Comments

An agorithm actually makes g(N) steps,
for example g(N) = C, + C,log,N

thereis an input size N' and

thereisa constant K, such that

foral N>N', g(N) <=K f(N)

then the algorithm isin O(f(N).

Binary search isO(log N):

C, + CjJlog,N <= (C; + C,) log,N for N > 2

Obviousdly lots of functions form an upper bound,
wetry to find the closest.

We aso want it to be a simple function, such as
constant O(1)

logarithmic O(log N)

linear O(N)

quadratic, cubic, exponential...

Typical complexity classes

Algorithms which have the same O( ) complexity
belong to the same compl exity class.

Common complexity classes:
. O(2) constant time: independent of input length

. O(log N) logarithmic: usually results from
splitting the task into smaller tasks, where the size
of the task is reduced by a constant fraction

. O(N) linear: usualy results when a given constant
amount of processing is carried out on each
element in the input.

Contd.

. O(N log N) : splitting into subtasks and combining
the results later

. O(N?): quadratic. Usually arises when all pairs of
input elements need to be processed

. O(2M): exponential. Usually emerges from a brute-
force solution to a problem.




Practical hints

. Find the actual function which shows how the
time/memory usage grows depending on the input
N.

. Omit &l constant factors.

. If the function contains different powers of N,
(e.g- N* + N3 + N?), leave only the highest power
(N9).

. Similarly, an exponential (2V) eventually
outgrows any polynomial in N.

Warning about O-notation

. O-notation only gives sensible comparisons of

algorithmswhen N islarge

Consider two algorithms for same task:
Linear: g(N) = 1000 N isin O(N)
Quadratic: g'(N) = N%/1000 isin O(N?)

. The quadratic oneisfaster for N < 1 000 00O.
. Some constant factors are machine dependent, but

others are a property of the algorithm itself.

Summary

. Big O notation is arough measure of how the
time/memory usage grows as the input size
increases.

. Big O notation gives a machine-independent
measure of efficiency which allows comparison of
agorithms.

It makes more sense for large input sizes. It
disregards all constant factors, even those intrinsic
to the algorithm.

Recommended reading

. Shaffer, Chapter 3 (note that we are not going to

use Q and O notation in this course, only the
upper bound O()).

Informal coursework

Which statements below are true?

. If an algorithm has time complexity O(N?), it
always makes precisely N2 steps, where N isthe
size of the input.

. An agorithm with time complexity O(N) is
aways runs slower than an algorithm with time
complexity O(log,(N)), for any input.

- An dgorithm which makes C, log,(N) steps and
an algorithm which makes C, log,(N) steps
belong to the same complexity class (C, and C,
are constants).




