Efficiency of algorithms Algorithms

. Algorithms - Algorithm is awell-defined sequence of steps
. Computational resources: time and space which leads to solving a certain problem.

. Best, worst and average case performance Steps should be:
. How to compare algorithms: machine-independent - concrete

measure of efficiency . unambiguous
. Growthrate . there should be finitely many of them
. Complexity measure O()

Efficiency of algorithms Binary search and linear search
. How much time doesit need . One seems faster than the other
. How much memory (space) doesit use . Can we characterise the difference more
precisely?
Best, worst and average case Binary search

Linear search: . Best case - item in the middle, one check
. Best performance: theitem we search for isin the . Worst case - item in the last possible division; the

first position; examines one position maximal number of times an array of length N can
. Worst performance: item not in the array or inthe bedivided islog, N

last position; examines al positions . Average case: item isfound after performing half

. Average performance (given that theitem isin the of the possible number of divisions; ¥zlogz N

array): examines half of the array

Which is more useful ?

. For real time programming: the worst case

. For getting a general idea of running time: average
case; however, often difficult to establish

. For choosing between severd available
agorithms: helps to know what is the best case
(maybe your data are in the best case format, for
example random).

How to compare

. Suppose we settle on comparing the worst case

performance of linear and binary search.

. Where do we start?
. Timing

Machine Independence

. The evaluation of efficiency should be as machine
independent as possible.

. For the time complexity of an agorithm,

- we count the number of basic operations the algorithm
performs

- we caculate how this number depends on the size of
the input.

. Space complexity: how much extra spaceis
needed in terms of the space used to represent the
input.

Some clarifications

. "Basic operations'?
. "Sizeof input"?

Size of input

. Itisupto usto decide what is a useful parameter
to vary when we measure efficiency of an
algorithm.

. For algorithms searching a linear collection, the
natural choice for size of input is the number of
items in the collection which we are searching
(e.g. length of the array).

Size of input contd.

. Graph search: we may be interested in how time

grows when the number of nodes increases, or in
how time grows when the number of edges
increases.

. Sometimes we measure efficiency as a function of

several parameters: e.g. number nodes and edges
inagraph.

Basic operations

. Basic operations are operations which take
constant time (at most time C for some constant
C).

. In other words, time required to perform the
operation does not grow with the size of the
operands, or is bounded by a constant.

Basic operations contd.

. If we are not sure how operations are
implemented, we have to exercise judgement: can
something be in principle implemented as a
constant time operation?

. For example, adding two 32-bit integers can be,
but adding alist of 32-bit integers can not: it is
going to take longer for alonger list.

Example

i nearSearch(int[] arr, int value){
for(int i=0; i<arr.length; i++)
if(arr[i]==value) return true;
return false;}

. Basic operations: comparing two integers;
incrementing i. Constant time (at most some C)
spent at each iteration.

. Size of input: length of the array N.
. Time usage in the worst case: t(N)=C * N.

Binary search
bi narySearch(int[] arr, int value){

int left = 0;

int right = arr.length - 1;

int mddle;

while (right >= left) {
mddle = (left+right)/2;
if (value == arr[mddle]) return true;
if (value < arr[mddle]) right=niddle-1;
else left = niddle+l;

return fal se;

Analysis of binary search

. Size of input = size of the array, say N
. Basic operations:; assignments and comparisons

. Tota number of steps: 3 assignments plus a block
of assignment, check and assignment repeated
logzN times. Assume 3 assignments take at most
time C, and at each iteration we spend at most
time C,.

. Total time=C, + C, 092N

Rate of Growth

We don't know how long the steps actually take;
we only know it is some constant time. We can
just lump all constants together and forget about
them.

What we are |eft with is the fact that thetime in
sequential search grows linearly with the input,
while in binary search it grows logarithmically -
much slower.

O() complexity measure

Big O notation gives an asymptotic upper bound
on the actual function which describes
time/memory usage of the algorithm.

The complexity of an algorithmis O(f(N)) if there

Upper bound example
f(N)=2N

t(N)=3+N

t(N) isin O(N)
because for all N>3,

exists a constant factor K and an input size N, 2N > 3+N
such that the actual usage of time/memory by the Here. N. = 3 and
algorithm on inputs greater than N, is always less K=
than K f(N).
N, N
In other words Comments

An agorithm actually makes g(N) steps,
for example g(N) = C, + C,log,N

thereis an input size N' and

thereisa constant K, such that

foral N>N', g(N) <=K f(N)

then the algorithm isin O(f(N).

Binary search isO(log N):

C, + CjJlog,N <= (C; + C,) log,N for N > 2

Obviousdly lots of functions form an upper bound,
wetry to find the closest.

We aso want it to be a simple function, such as
constant O(1)

logarithmic O(log N)

linear O(N)

quadratic, cubic, exponential...

Typical complexity classes

Algorithms which have the same O() complexity
belong to the same compl exity class.

Common complexity classes:
. O(2) constant time: independent of input length

. O(log N) logarithmic: usually results from
splitting the task into smaller tasks, where the size
of the task is reduced by a constant fraction

. O(N) linear: usualy results when a given constant
amount of processing is carried out on each
element in the input.

Contd.

. O(N log N) : splitting into subtasks and combining
the results later

. O(N?): quadratic. Usually arises when all pairs of
input elements need to be processed

. O(2M): exponential. Usually emerges from a brute-
force solution to a problem.

Practical hints

. Find the actual function which shows how the
time/memory usage grows depending on the input
N.

. Omit &l constant factors.

. If the function contains different powers of N,
(e.g- N* + N3 + N?), leave only the highest power
(N9).

. Similarly, an exponential (2V) eventually
outgrows any polynomial in N.

Warning about O-notation

. O-notation only gives sensible comparisons of

algorithmswhen N islarge

Consider two algorithms for same task:
Linear: g(N) = 1000 N isin O(N)
Quadratic: g'(N) = N%/1000 isin O(N?)

. The quadratic oneisfaster for N < 1 000 00O.
. Some constant factors are machine dependent, but

others are a property of the algorithm itself.

Summary

. Big O notation is arough measure of how the
time/memory usage grows as the input size
increases.

. Big O notation gives a machine-independent
measure of efficiency which allows comparison of
agorithms.

It makes more sense for large input sizes. It
disregards all constant factors, even those intrinsic
to the algorithm.

Recommended reading

. Shaffer, Chapter 3 (note that we are not going to

use Q and O notation in this course, only the
upper bound O()).

Informal coursework

Which statements below are true?

. If an algorithm has time complexity O(N?), it
always makes precisely N2 steps, where N isthe
size of the input.

. An agorithm with time complexity O(N) is
aways runs slower than an algorithm with time
complexity O(log,(N)), for any input.

- An dgorithm which makes C, log,(N) steps and
an algorithm which makes C, log,(N) steps
belong to the same complexity class (C, and C,
are constants).

