Complexity of simple sorting algorithms

- · Bubble sort
- · Selection sort
- Insertion sort

Complexity of bubble sort

- For an array of size N, in the worst case:
 1st passage through the inner loop: N-1 comparisons and N-1 swaps
-
- (N-1)st passage through the inner loop: 1 comparison and 1 swap
 All together: c ((N-1) + (N-2) + ... + 1) +k where c is the time required to do one comparison and one swap

Complexity of bubble sort

$$c((N-1) + (N-2) + ... + 1) + k$$

$$\begin{array}{l} (N\text{-}1) + (N\text{-}2) + ... + 1 \\ + \\ 1 + \\ 2 + ... + (N\text{-}1) = \\ = N + N + ... + N = N*(N\text{-}1) \end{array}$$

so our function equals $c\ N^*(N\text{-}1)/2 + k = 1/2c\ (N^2\text{-}N) + k$ complexity $O(N^2).$

Complexity of bubble sort

?
$$1/2c (N^2-N) + k \le K^* N^2$$

for which values of K and N is this inequality true?

For example, K=c+k and N>0 (provided N can only take integer values).

Selection sort

pos_greatest=0

Selection sort

pos_greatest=0

Selection sort 23 10 12 5 pos_greatest=0 swap(0,3)

Complexity of insertion sort

- $. \label{eq:comparisons} \begin{tabular}{ll} In the worst case, has to make $N(N-1)/2$ comparisons and shifts to the right \\ \end{tabular}$
- . also $O(N^2)$ worst case complexity
- . best case: array already sorted, no shifts.

Reading and informal coursework

- · Shaffer, Chapter 8.1, 8.2.
- Informal coursework: prove that the simple sorting algorithms above are not in O(N).