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Summary of big O

•  Running time of an algorithm is described by
some function t(n): from natural numbers to
running times (say rational numbers).

• Since we don’t know how long basic steps such as
array accesses or integer comparisons take, we
replace them by constants.

• So we get something like t(n) = c1 + c2 log2 n for
binary search or t(n) = c1 n2 - c2 n + c3 for bubble
sort.

Summary of big O continued

• Then we classify algorithms into broad categories
according to how fast their running time grows.

• We use the notion of asymptotic upper bound O()
to do this. Intuitively, t(n) ∈ O(f(n)) if f(n) grows
at least as fast as t(n), it is an upper bound on t(n).

• Formally, t(n) ∈ O(f(n)) if there are constants n0

and k, such that: for all n > n0 , t(n) ≤ k f(n).

• For example, c1 + c2 log2 n ∈ O(log2 n) and
c1 n2 - c2 n + c3 ∈ O(n2 ).

Question from last lecture

• Prove that bubble sort’s running time is not in
O(n) (its growth rate is greater than linear), in
other words,

c1 n2 - c2 n + c3 ∉ O(n)

• Assume that c1 , c2 and c3  are positive (c1 has to
be positive for the function to be positive, we
already proved c1 n2 + c2 n + c3 ∉ O(n), and proof
for negative c3 will be very similar).

Question from last lecture

• Proof by contradiction. Assume that for some n0

and k, for all n > n0 ,

c1 n2 - c2 n + c3 ≤ k n.

Then c1 n2 + c3 ≤ k n + c2 n. Since c3  is positive,

 c1 n2 ≤ k n + c2 n. Dividing both sides by n, we get:

for all n > n0 , c1 n ≤ k + c2 . Since c1 , c2 and k are

positive , this is a contradiction. So,

c1 n2 - c2 n + c3 ∉ O(n).

Merge sort

• Recursion

• Divide and conquer algorithms

• Merge sort

Recursion

• An algorithm is recursive if it calls itself to
do part of its work

• Has to call itself on smaller problems and
have a base case if it is ever to terminate

• Base case is the case which can be solved
without recursive call

• Examples: binary search; reversing a list...
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Divide and conquer algorithms

General strategy:

• Split the problem into subproblems

• Solve subproblems

• Combine the results

• Could be implemented recursively or not

• Examples: merge sort in this lecture

Merging sorted arrays
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Merging sorted arrays
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Merge sort

Recursive algorithm:

• split an array in two halves

• call merge sort on each half

• merge sorted halves

Merging halves of an array

Pass boundaries of subarrays to the algorithm
instead of new arrays:
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Workspace

• Use workspace to merge sorted halves into.

• Exercise: could you merge the two halves
back into the array without using extra
space?

• Could you do it in linear time?
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Implementation

private static void recMergeSort(

int[] arr, int[] workSpace, int l, int r) {

    if(l == r){

        return;

    } else {

        int m = (l+r) / 2;

        recMergeSort(arr, workSpace, l, m);

        recMergeSort(arr, workSpace, m+1, r);

        merge(arr, workSpace, l, m+1, r);
    }
}

Example
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Complexity

Time complexity:

• levels of recursion: log2N

• at each level: merging N items

• time complexity: O(N log2N)

Space complexity: O(N)


