Summary of big O

- Running time of an algorithm is described by some function t(n): from natural numbers to running times (say rational numbers).
- Since we don't know how long basic steps such as array accesses or integer comparisons take, we replace them by constants.
- So we get something like t(n) = c₁ + c₂ log₂ n for binary search or t(n) = c₁ n² c₂ n + c₃ for bubble sort.

Summary of big O continued

- Then we classify algorithms into broad categories according to how fast their running time grows.
- We use the notion of asymptotic upper bound O() to do this. Intuitively, $t(n) \in O(f(n))$ if f(n) grows at least as fast as t(n), it is an upper bound on t(n).
- Formally, $t(n) \in O(f(n))$ if there are constants n_0 and k, such that: for all $n > n_0$, $t(n) \le k$ f(n).
- For example, $c_1 + c_2 \log_2 n \in O(\log_2 n)$ and $c_1 n^2 c_2 n + c_3 \in O(n^2)$.

Question from last lecture

- Prove that bubble sort's running time is not in O(n) (its growth rate is greater than linear), in other words,
- $c_1 \; n^2 c_2 \; n + c_3 \not\in O(n)$
- Assume that c₁, c₂ and c₃ are positive (c₁ has to be positive for the function to be positive, we already proved c₁ n² + c₂ n + c₃ ∉ O(n), and proof for negative c₃ will be very similar).

Question from last lecture

- Proof by contradiction. Assume that for some \boldsymbol{n}_0 and k , for all $n>n_0$,
- $c_1\;n^2\text{ }c_2\;n+c_3\leq k\;n.$

Then c_1 $n^2+c_3 \le k$ $n+c_2$ n. Since c_3 is positive, c_1 $n^2 \le k$ $n+c_2$ n. Dividing both sides by n, we get: for all $n>n_0$, c_1 $n \le k+c_2$. Since c_1 , c_2 and k are positive, this is a contradiction. So,

 $c_1 \ n^2 - c_2 \ n + c_3 \not\in O(n).$

Merge sort

- Recursion
- Divide and conquer algorithms
- · Merge sort

Recursion

- An algorithm is recursive if it calls itself to do part of its work
- Has to call itself on smaller problems and have a *base case* if it is ever to terminate
- Base case is the case which can be solved without recursive call
- Examples: binary search; reversing a list...

Divide and conquer algorithms

General strategy:

- Split the problem into subproblems
- Solve subproblems
- Combine the results
- Could be implemented recursively or not
- Examples: merge sort in this lecture

Merging sorted arrays array A: array B: 23 56 58 28 60 70 † towPtr highPtr workspace: 17 † j

Workspace

- Use workspace to merge sorted halves into.
- Exercise: could you merge the two halves back into the array without using extra space?
- Could you do it in linear time?

Implementation

```
private static void recMergeSort(
int[] arr, int[] workSpace, int 1, int r) {
    if(1 == r){
        return;
    } else {
        int m = (1+r) / 2;
        recMergeSort(arr, workSpace, 1, m);
        recMergeSort(arr, workSpace, m+1, r);
        merge(arr, workSpace, 1, m+1, r);
}
```


Complexity

Time complexity:

• levels of recursion: log₂N

• at each level: merging N items

• time complexity: O(N log₂N)

Space complexity: O(N)