Summary of big O

* Running time of an algorithm is described by
some function t(n): from natural numbersto
running times (say rational numbers).

* Since we don’t know how long basic steps such as
array accesses or integer comparisons take, we
replace them by constants.

* So we get something like t(n) = ¢, + ¢, log, n for
binary search or t(n) = ¢, n? - ¢, n + ¢, for bubble
sort.

Summary of big O continued

» Then we classify algorithmsinto broad categories
according to how fast their running time grows.

» We use the notion of asymptotic upper bound O()
to do this. Intuitively, t(n) DO(f(n)) if f(n) grows
at least asfast ast(n), it is an upper bound on t(n).

» Formally, t(n) DO(f(n)) if there are constants n,
and k, such that: for all n>ny, t(n) <k f(n).

* For example, ¢, + c,lo0g, n 0O(log, n) and
c, N?- ¢, n+ ¢y 0O(n?).

Question from last lecture

 Prove that bubble sort’s running timeisnot in
O(n) (its growth rate is greater than linear), in
other words,

¢, N?-¢,n+ ¢y 0O(n)

» Assumethat ¢, , ¢, and ¢, are positive (¢, hasto
be positive for the function to be positive, we
aready proved ¢, n? + ¢, n + ¢; JO(n), and proof
for negative c; will be very similar).

Question from last lecture

+ Proof by contradiction. Assume that for some n,
andk, foralln>ny,

¢ M-cn+cgskn.

Thenc, n?+c;<kn+c,n. Sincec; ispositive,

¢, n?< k n+c, n. Dividing both sides by n, we get:
foraln>ny,c,n<k+c,.Sincec,, c,andk are
positive, thisis a contradiction. So,

C, N?-c, n+¢c; 0O(N).

Merge sort
* Recursion
« Divide and conquer agorithms
* Merge sort

Recursion

An agorithmisrecursiveif it calsitself to
do part of itswork

» Hasto call itself on smaller problems and
have abase caseif it is ever to terminate

» Base case is the case which can be solved
without recursive cal

» Examples: binary search; reversing alist...

Divide and conquer algorithms

General strategy:

* Split the problem into subproblems
* Solve subproblems

» Combinethe results

* Could be implemented recursively or not
» Examples: merge sort in this lecture

Merging sorted arrays

array A array B:
17]23]s6]58
t t

| owPt r hi ghPt r
wor kspace:

LITTTTT]
!
J

Merging sorted arrays

array A array B:
HEEE
t t
| owPt r hi ghPt r

wor kspace:
lrfs] [[[]]

t
i

Merging sorted arrays
array A array B:
| [23]s]58]
t t
| owPt r hi ghPt r
wor kspace:
bl LT T]
!
J
Merging sorted arrays
array A array B:
HEEE
t t
| owPt r hi ghPtr
wor kspace:

lrfzslos] | [[|

j

Merging sorted arrays

array A array B:
| owPt r T hi gThPtr
wor kspace:

l7[zsfslse] [| |

i

Merging sorted arrays

Merging sorted arrays

array A array B:

[TTT] [T Tl
t t

| owPt r hi ghPt r

wor kspace:

[17]23]28]s56]58] 60| |
t
j

array A array B:
[TTT]
t t
| owPt r hi ghPt r
wor kspace:
[a7[23[28s]s8] | |
f
J
Merging sorted arrays
array A array B:
t t
| owPt r hi ghPt r
wor kspace:

[17]23]28(s56|s58]60] 70|
t
i

Merge sort

Recursive algorithm:

* gplit an array in two halves
« call merge sort on each half
» merge sorted halves

Merging halves of an array

Pass boundaries of subarrays to the algorithm
instead of new arrays:

| m ml

' v
[17]23]56s58] 28] 60| 70|

| owPt r hi ghPt r

Workspace

» Use workspace to merge sorted halvesinto.

 Exercise: could you merge the two halves
back into the array without using extra
space?

e Couldyou doitin linear time?

I mplementation

private static void recMergeSort (
int[] arr, int[] workSpace, int |, int r) {
if(l ==r){
return;
} else {
int m= (l+r) [/ 2
recMergeSort(arr, workSpace, |, m;

recMergeSort(arr, workSpace, mtl, r);

merge(arr, workSpace, |, mtl, r);

Example

[elsef] [selrofeo]ee]
elr] [[[eofee]

&
(B[] [se]o] [es[eo]

[17]23]s56]| |28]s8]60 70

[17] 23] 28]56s58] 60| 70|

Complexity

Time complexity:

* levels of recursion: log,N

* at each level: merging N items
* time complexity: O(N log,N)

Space complexity: O(N)

