
1

Summary of big O

• Running time of an algorithm is described by
some function t(n): from natural numbers to
running times (say rational numbers).

• Since we don’t know how long basic steps such as
array accesses or integer comparisons take, we
replace them by constants.

• So we get something like t(n) = c1 + c2 log2 n for
binary search or t(n) = c1 n2 - c2 n + c3 for bubble
sort.

Summary of big O continued

• Then we classify algorithms into broad categories
according to how fast their running time grows.

• We use the notion of asymptotic upper bound O()
to do this. Intuitively, t(n) ∈ O(f(n)) if f(n) grows
at least as fast as t(n), it is an upper bound on t(n).

• Formally, t(n) ∈ O(f(n)) if there are constants n0

and k, such that: for all n > n0 , t(n) ≤ k f(n).

• For example, c1 + c2 log2 n ∈ O(log2 n) and
c1 n2 - c2 n + c3 ∈ O(n2).

Question from last lecture

• Prove that bubble sort’s running time is not in
O(n) (its growth rate is greater than linear), in
other words,

c1 n2 - c2 n + c3 ∉ O(n)

• Assume that c1 , c2 and c3 are positive (c1 has to
be positive for the function to be positive, we
already proved c1 n2 + c2 n + c3 ∉ O(n), and proof
for negative c3 will be very similar).

Question from last lecture

• Proof by contradiction. Assume that for some n0

and k, for all n > n0 ,

c1 n2 - c2 n + c3 ≤ k n.

Then c1 n2 + c3 ≤ k n + c2 n. Since c3 is positive,

 c1 n2 ≤ k n + c2 n. Dividing both sides by n, we get:

for all n > n0 , c1 n ≤ k + c2 . Since c1 , c2 and k are

positive , this is a contradiction. So,

c1 n2 - c2 n + c3 ∉ O(n).

Merge sort

• Recursion

• Divide and conquer algorithms

• Merge sort

Recursion

• An algorithm is recursive if it calls itself to
do part of its work

• Has to call itself on smaller problems and
have a base case if it is ever to terminate

• Base case is the case which can be solved
without recursive call

• Examples: binary search; reversing a list...

2

Divide and conquer algorithms

General strategy:

• Split the problem into subproblems

• Solve subproblems

• Combine the results

• Could be implemented recursively or not

• Examples: merge sort in this lecture

Merging sorted arrays

17 23 56 58 28 60 70

lowPtr highPtr

j

array A: array B:

workspace:

Merging sorted arrays

23 56 58 28 60 70

lowPtr highPtr

17

j

array A: array B:

workspace:

Merging sorted arrays

56 58 28 60 70

lowPtr highPtr

17 23

j

array A: array B:

workspace:

Merging sorted arrays

56 58 60 70

lowPtr highPtr

17 23 28

j

array A: array B:

workspace:

Merging sorted arrays

58 60 70

lowPtr highPtr

17 23 28

j

56

array A: array B:

workspace:

3

Merging sorted arrays

60 70

lowPtr highPtr

17 23 28

j

56 58

array A: array B:

workspace:

Merging sorted arrays

70

lowPtr highPtr

j

17 23 28 56 58 60

array A: array B:

workspace:

Merging sorted arrays

lowPtr highPtr

array A: array B:

17 23 28

j

56 58 60 70

workspace:

Merge sort

Recursive algorithm:

• split an array in two halves

• call merge sort on each half

• merge sorted halves

Merging halves of an array

Pass boundaries of subarrays to the algorithm
instead of new arrays:

17 23 56

lowPtr

58 28 60 70

l m m+1 r

highPtr

Workspace

• Use workspace to merge sorted halves into.

• Exercise: could you merge the two halves
back into the array without using extra
space?

• Could you do it in linear time?

4

Implementation

private static void recMergeSort(

int[] arr, int[] workSpace, int l, int r) {

 if(l == r){

 return;

 } else {

 int m = (l+r) / 2;

 recMergeSort(arr, workSpace, l, m);

 recMergeSort(arr, workSpace, m+1, r);

 merge(arr, workSpace, l, m+1, r);
 }
}

Example

23 56 17 58 70 60 28

70 60 28

58 70 28

56 17 58 70 60

17 56 58 70

17 23 56 28 58 60 70

17 23 28 56 58 60 70

581723 56

1723 56 60

28

23 6028

Complexity

Time complexity:

• levels of recursion: log2N

• at each level: merging N items

• time complexity: O(N log2N)

Space complexity: O(N)

