
1

Summary of data structures in the
course

" Arrays
" Vectors (resizable arrays)
" Linked lists
" Stacks and queues
" Trees (search trees and also heaps)
" Hash tables
" Graphs

General purpose data structures

" Unordered array
" Ordered array
" Linked list
" Ordered linked list
" Binary search trees
" Balanced binary search trees
" Hash tables

Time complexity of insertion

" Unordered array: O(1)
" Ordered array: O(N)
" Linked list: O(1)
" Ordered linked list: O(N)
" Binary search trees: O(N) worst case,
 O(log N) on average.
" Balanced binary search trees: O(log N)
" Hash tables: O(1)

Which one to choose (from Lafore’s
textbook)

start small
amount
of data?

amount
of data

predictable?

linked list
yes no

search,
insertion
very fast?

no

hash
table

yes search
fast?

yes

ordered
array

yes

no

no
unordered

array
key order

random?
binary
search

tree

yes
balanced binary

search tree

no

Choosing a data structure

" Decision diagrams such as this should be taken
with a pinch of salt.

" Given a problem, there are sensible and less
sensible choices of a data structure, both from
the ease of programming point of view and from
efficiency point of view.

" Just like choosing a right tool for the job, some
of it is obvious and some of it is down to
experience or even to personal preference

Exam revision

h The school’s policy is not to provide model
answers for exams.

h However answers for formal and informal
courseworks are available on-line.

2

Revision for exams

• Main things tested in the exam
• Exam format
• How to revise

What is tested in the exam

• Knowledge of data structures (e.g. what is a
complete binary search tree; give an example;
show the result of inserting this value into this
tree…)

• Knowledge of algorithms (e.g. give pseudocode
or Java code of selection sort)

• Understanding big-Oh notation (e.g. what is the
time complexity of this algorithm)

What is tested in the exam

• Given a problem, suggest which algorithms and
data structures are appropriate for solving it.

Example: implementing a telephone directory. First
need to identify which operations are going to be
performed (define ADT) then choose a data
structure to store telephones and names so that
search etc. is efficient.

“Do we have to write code?”

• Yes
• I will not expect you to implement huge data

structures like AVL trees in 30 minutes but
something which takes 20-30 lines of Java code.

• If you cannot give proper Java code try to give as
detailed pseudocode as possible.

Example: selection sort

• Vague pseudocode: given an array of numbers of
length n, loop from i = 0 to i = n-1. Using an
inner loop, find the index k of the largest number
between arr[0] and arr[i]. Swap this number at
position i.

• Will get you a pass mark.

Example: selection sort contd.

• Better effort:
Given an array of numbers arr of length n,
loop from i = 0 to i = n-1.
 k = 0
 loop from j = 0 to j = i.
 if (arr[j] > arr[k]) k = j
 swap(i,k)

3

Example: selection sort contd.

• Even better, give real Java code when required.
• Please don’t write any UserInput routines or any

other testing stuff. If you are asked to implement
some method, e.g. sorting, just write the code
for that method.

Exam Format

• Should attempt four out of six questions (only
the first four will be marked! Cross out the
answers you don’t want to be marked).

• Question 1 is a compulsory question (multiple
choice, covers the whole course).

• The other three out of five are up to you.

Multiple choice

• Multiple choice this year is straightforward
`select one correct option’.

• If you select the right option, you get marks, if
not, you get 0 marks for that part (no negative
marks!).

How to revise

• Straightforward knowledge questions: lecture
notes and any ADS textbook (e.g. Shaffer).

• Choosing appropriate data structures and
algorithms: use knowledge of effectiveness and
other properties (dynamic vs static) of different
data structures.

To sum up

• Do all informal courseworks if you have not
done so yet.

• For every algorithm I explained, practice tracing
it on some example. (Draw a graph and do
Prim’s algorithm for it. Draw a B-tree and insert
some new elements in it.)

• Do informal and formal courseworks from
previous years. They have model answers.

