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Summary of data structures in the
course

" Arrays
" Vectors (resizable arrays)
" Linked lists
" Stacks and queues
" Trees (search trees and also heaps)
" Hash tables
" Graphs

General purpose data structures

" Unordered array
" Ordered array
" Linked list
" Ordered linked list
" Binary search trees
" Balanced binary search trees
" Hash tables

Time complexity of insertion

" Unordered array:                                   O(1)
" Ordered array:                                       O(N)
" Linked list:                                            O(1)
" Ordered linked list:                               O(N)
" Binary search trees:           O(N) worst case,
                                        O(log N) on average.
" Balanced binary search trees:         O(log N)
" Hash tables:                                     O(1)

Which one to choose (from Lafore’s
textbook)
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Choosing a data structure

" Decision diagrams such as this should be taken
with a pinch of salt.

" Given a problem, there are sensible and less
sensible choices  of a data structure, both from
the ease of programming point of view and from
efficiency point of view.

" Just like choosing a right tool for the job, some
of it is obvious and some of it is down to
experience or even to personal preference

Exam revision

h The school’s policy is not to provide model
answers for exams.

h However answers for formal and informal
courseworks are available on-line.
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Revision for exams

• Main things tested in the exam
• Exam format
• How to revise

What is tested in the exam

• Knowledge of data structures (e.g. what is a
complete binary search tree; give an example;
show the result of inserting this value into this
tree…)

• Knowledge of algorithms (e.g. give pseudocode
or Java code of selection sort)

• Understanding big-Oh notation (e.g. what is the
time complexity of this algorithm)

What is tested in the exam

• Given a problem, suggest which algorithms and
data structures are appropriate for solving it.

Example: implementing a telephone directory. First
need to identify which operations are going to be
performed (define ADT) then choose a data
structure to store telephones and names so that
search etc. is efficient.

“Do we have to write code?”

• Yes
• I will not expect you to implement huge data

structures like AVL trees in 30 minutes but
something which takes 20-30 lines of Java code.

• If you cannot give proper Java code try to give as
detailed pseudocode as possible.

Example: selection sort

• Vague pseudocode: given an array of numbers of
length n, loop from i = 0 to i = n-1. Using an
inner loop, find the index k of the largest number
between arr[0] and arr[i]. Swap this number at
position i.

• Will get you a pass mark.

Example: selection sort contd.

• Better effort:
Given an array of numbers arr of length n,
loop from i = 0 to i = n-1.
      k = 0
      loop from j = 0 to j = i.
          if (arr[j] > arr[k]) k = j
       swap(i,k)
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Example: selection sort contd.

• Even better, give real Java code when required.
• Please don’t write any UserInput routines or any

other testing stuff. If you are asked to implement
some method, e.g. sorting,  just write the code
for that method.

Exam Format

• Should attempt four out of six questions (only
the first four will be marked! Cross out the
answers you don’t want to be marked).

• Question 1 is a compulsory question (multiple
choice, covers the whole course).

• The other three out of five are up to you.

Multiple choice

• Multiple choice this year is straightforward
`select one correct option’.

• If you select the right option, you get marks, if
not, you get 0 marks for that part (no negative
marks!).

How to revise

• Straightforward knowledge questions: lecture
notes and any ADS textbook (e.g. Shaffer).

• Choosing appropriate data structures and
algorithms: use knowledge of effectiveness and
other properties (dynamic vs static) of different
data structures.

To sum up

• Do all informal courseworks if you have not
done so yet.

• For every algorithm I explained, practice tracing
it on some example. (Draw a graph and do
Prim’s algorithm for it. Draw a B-tree and insert
some new elements in it.)

• Do informal and formal courseworks from
previous years. They have model answers.


