MODEL ANSWER TO INFORMAL COURSEWORK 2

QUESTION 1

To show that $n^2 + 7n + 4$ is in $O(n^2)$, we have to prove that there are positive numbers n_0 and c such that, for all $n > n_0$, $n^2 + 7n + 4 \le cn^2$. Let's note that when n > 1, $n < n^2$ and $1 < n^2$. Therefore, with

Let's note that when n > 1, n < n and 1 < n. Therefore, with n > 1, $7n < 7n^2$ and $4 < 4n^2$, and hence $n^2 + 7n + 4 \le n^2 + 7n^2 + 4n^2$. Consequently, for all n > 1, $n^2 + 7n + 4 \le 12x^2$; thus, $n_0 = 1$ and c = 12.

QUESTION 2

We have to find such n_0 and c that, for all $n > n_0$, $3log_4n^9 + 5 \le clog_2n$.

First, let's note that, for any n, $3log_4n^3 = 9log_4n = \frac{9}{2}log_2n$. Secondly, when n > 2, $1 < log_2n$ and hence $5 < 5log_2n$. Therefore, for n > 2, $3log_4n^3 + 5 \le \frac{9}{2}log_2n + 5log_2n = 9\frac{1}{2}log_2n$. Thus, $n_0 = 2$ and $c = 9\frac{1}{2}$.

QUESTION 3

We have to find such n_0 and c that, for all $n > n_0$, $7n^2 \le cn^3$.

Let's note that when n > 7, $7n^2 < n^3$. Thus, we can take $n_0 = 7$ and c = 1.

QUESTION 4

No, x^3 is not in $O(7x^2)$. This can be proven by reductio ad absurdum. Let's suppose that x^3 is in $O(7x^2)$. Then, by definition of O, there exist positive numbers n_0 and c such that, for all $n > n_0$, $n^3 \le c \times 7n^2$. Since n, and hence n^2 , is a positive number, we can devide both sides of the above inequality by n^2 , again obtaining a valid inequality. Thus, $n \le c \times 7$, for all $n > n_0$. This last assertion is, however, absurd since n, being an arbitrarily large number, may clearly exceed $c \times 7$, no matter what c is. Thus, our assumption that x^3 is in $O(7x^2)$ has led to absurd, hence it was false. Therefore, x^3 is not in $O(7x^2)$.