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Graph traversals

• In this lecture, we look at two ways of visiting all vertices 
in a graph: breadth-first search and depth-first search.

• Traversal of the graph is used to perform tasks such as 
searching for a certain node

• It can also be slightly modified to search for a path 
between two nodes, check if the graph is connected, check 
if it contains loops, and so on.

Breadth first search

BFS starting from vertex v:

create a queue Q

mark v as visited and put v into Q

while Q is non-empty

remove the head u of Q

mark and enqueue all (unvisited) 
neighbours of u
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BFS starting from A:
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Simple DFS

DFS starting from vertex v:

create a stack S

mark v as visited and push v onto S

while S is non-empty

peek at the top u of S

if u has an (unvisited)neighbour w, 
mark w and push it onto S

else pop S
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DFS starting from A:
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DFS starting from A:
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Modification of depth first search

• How to get DFS to detect cycles in a directed graph:

idea: if we encounter a vertex which is already on the stack, 
we found a loop (stack contains vertices on a path, and if 
we see the same vertex again, the path must contain a 
cycle).

• Instead of visited and unvisited, use three colours:
– white = unvisited

– grey = on the stack

– black = finished (we backtracked from it, seen everywhere we can 
reach from it)

Modification of depth first search

Modified DFS starting from v:
all vertices coloured white
create a stack S
colour v grey and push v onto S

while S is non-empty
peek at the top u of S
if u has a grey neighbour, there is a 
cycle

else if u has a white neighbour w,
colour w grey and push it onto S
else colour u black and pop S
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Tracing modified DFS from A
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E has a grey neighbour: B! 
Found a loop!

Pseudocode for BFS and DFS

• To compute complexity, I will be referring to an adjacency 
list implementation

• Assume that we have a method which returns the first 
unmarked vertex adjacent to a given one: 
GraphNode firstUnmarkedAdj(GraphNode v)

v u1(marked) u2(unmarked) u3(unmarked)

list of v’s neighbours

bookmark
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Implementation of 
firstUnmarkedAdj()

• We keep a pointer into the adjacency list of each vertex so 
that we do not start to traverse the list of adjacent vertices 

from the beginning each time.

v u1(marked) u2(unmarked) u3(unmarked)

currUnmarkedAdj

Pseudocode for breadth-first 
search starting from vertex s

s.marked = true; // marked is a field in  

// GraphNode
Queue Q = new Queue();  
Q.enqueue(s); 

while(! Q.isempty()) {
v = Q.dequeue();
u = firstUnmarkedAdj(v); 
while (u != null){

u.marked = true;
Q.enqueue(u);

u = firstUnmarkedAdj(v);}}}

Pseudocode for DFS

s.marked = true;
Stack S = new Stack();
S.push(s);
while(! S.isempty()){

v = S.peek(); 
u = firstUnmarkedAdj(v);
if (u == null) S.pop();
else {

u.marked = true; 
S.push(u);

}
}

Space Complexity of BFS and 
DFS 

• Need a queue/stack of size |V| (the number of vertices). 
Space complexity O(V). 

Time Complexity of BFS and 
DFS 

• In terms of the number of vertices V: two nested loops 
over V, hence O(V2). 

• More useful complexity estimate is in terms of the number 
of edges. Usually, the number of edges is less than V2. 

Time complexity of BFS

Adjacency lists:

V        E

v0: {v1,v2}

v1: {v3}

v2: {v3}

v3: {}

v0

v1

v3

v2
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Time complexity of BFS

Adjacency lists:

V        E

v0: {v1,v2} mark, enqueue 
v0

v1: {v3}

v2: {v3}

v3: {}

v0

v1

v3

v2

Time complexity of BFS

Adjacency lists:

V        E

v0: {v1,v2} dequeue v0; 
mark, enqueue v1,v2

v1: {v3}

v2: {v3}

v3: {}
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Time complexity of BFS

Adjacency lists:

V        E

v0: {v1,v2}

v1: {v3} dequeue v1; mark, 
enqueue v3

v2: {v3}

v3: {}

v0
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v3
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Time complexity of BFS

Adjacency lists:

V        E

v0: {v1,v2}

v1: {v3}

v2: {v3} dequeue v2, check 
its adjacency list (v3 
already marked)

v3: {}

v0

v1

v3

v2

Time complexity of BFS

Adjacency lists:

V        E

v0: {v1,v2}

v1: {v3}

v2: {v3}

v3: {} dequeue v3; check its 
adjacency list

v0

v1

v3

v2

Time complexity of BFS

Adjacency lists:

V        E

v0: {v1,v2} |E0| = 2

v1: {v3} |E1| = 1

v2: {v3} |E2| = 1

v3: {} |E3| = 0
Total number of steps: 
|V| + |E0| + |E1| + |E2| +|E3| 

= 
= |V|+|E|. 

v0

v1

v3

v2
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Complexity of breadth-first 
search 

• Assume an adjacency list representation, V is the number 
of vertices, E the number of edges. 

• Each vertex is enqueued and dequeued at most once. 
• Scanning for all adjacent vertices takes O(|E|) time, since 

sum of lengths of adjacency lists is |E|. 
• Gives a O(|V|+|E|) time complexity. 

Complexity of depth-first search 

• Each vertex is pushed on the stack and popped at most 
once. 

• For every vertex we check what the next unvisited
neighbour is. 

• In our implementation, we traverse the adjacency list only 
once. This gives O(|V|+|E|) again. 


