Model checking coalitional games in shortage resource scenarios

Dario Della Monica

ICE-TCS, School of Computer Science, Reykjavik University, Iceland dariodm@ru.is

Joint work with Margherita Napoli and Mimmo Parente

LRBA @ ESSLLI 2015

Barcelona, August 2015

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

Context

- Multi-Agent Systems (MAS)
- MAS + resource constraints

ATL RB-ATL / RAL

- Our proposal: *Priced* RB-ATL
 - Model checking (lower bound)
 - Optimization problem

PRB-ATL

< 🗇 🕨

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

Context

Multi-Agent Systems (MAS)

MAS + resource constraints

Our proposal: *Priced* RB-ATL
Model checking (lower bound)
Optimization problem

3 Conclusions and future work

ATL RB-ATL / RAL

PRB-ATL

→ E > < E</p>

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

Context

Multi-Agent Systems (MAS)

MAS + resource constraints

Our proposal: *Priced* RB-ATL
Model checking (lower bound)
Optimization problem

ATL RB-ATL / RAL

PRB-ATL

→ Ξ → → Ξ

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

Several agents

Intelligent (take decisions, moves)

- Independent
- Global state (union of single states)
- Next state univocally identified by moves

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Global state (union of single states)
- Next state univocally identified by moves

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Global state (union of single states)
- Next state univocally identified by moves

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Global state (union of single states)
- Next state univocally identified by moves

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Global state (union of single states)
- Next state univocally identified by moves

イロト 不得 とくほと くほう

COALITION - modeling collective behaviors/strategies

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

ヘロト ヘ回ト ヘヨト ヘヨト

COALITION - modeling collective behaviors/strategies

Logical Formalisms

Coalition Logic (CL) and Alternating-time Temporal Logic (ATL)

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

COALITION - modeling collective behaviors/strategies

Logical Formalisms

Coalition Logic (CL) and Alternating-time Temporal Logic (ATL)

Theorem (Goranko, TARK 2001)

CL can be embedded into ATL

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

くロト (過) (目) (日)

Formulae of ATL are given by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \bigcirc \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \Box \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \varphi \mathcal{U} \varphi$$

Formulae of ATL predicate about abilities of coalitions of agents

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

Formulae of ATL are given by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \bigcirc \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \Box \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \varphi \mathcal{U} \varphi$$

Formulae of ATL predicate about abilities of coalitions of agents

Formulae of ATL are evaluated wrt:

- a game structure (or game arena) G
- a location q of G

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

A game structure G is a state transition graph:

vertices labeled by atomic propositions

- in vertices agents choose actions

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

・ロト ・ 同ト ・ ヨト ・ ヨト

A game structure G is a state transition graph:

vertices labeled by atomic propositions

- in vertices agents choose actions
- possible combinations → transitions (edges of the graph)

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

・ロト ・ 同ト ・ ヨト ・ ヨト

A game structure G is a state transition graph:

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- vertices labeled by atomic propositions
- in vertices agents choose actions

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

A game structure G is a state transition graph:

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- vertices labeled by atomic propositions
- in vertices agents choose actions
- possible combinations → transitions (edges of the graph)

A game structure G is a state transition graph:

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- vertices labeled by atomic propositions
- in vertices agents choose actions
- possible combinations → transitions (edges of the graph)

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

ヘロト ヘワト ヘビト ヘビト

 $\langle \langle A \rangle \rangle \bigcirc \rho$ next

▶ ₹ √ ९ €
 D. Della Monica

・ロット (雪) () () () ()

 $\langle \langle A \rangle \rangle \bigcirc p$ next $\langle \langle A \rangle \rangle \Box p$ always

► Ξ → Q Q
 D. Della Monica

ヘロア 人間 アメヨア 人口 ア

 $\langle \langle A \rangle \rangle \bigcirc p$ next $\langle \langle A \rangle \rangle \Box p$ always $\langle \langle A \rangle \rangle p \mathcal{U} q$ until q

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

► Ξ → Q Q
 D. Della Monica

ヘロア 人間 アメヨア 人口 ア

 $\langle \langle A \rangle \rangle \bigcirc p$ next $\langle \langle A \rangle \rangle \Box p$ always

 $\langle \langle A \rangle \rangle p \mathcal{U} q$ until q

regardless of actions performed by other agents (opponent)

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

► Ξ → Q Q
 D. Della Monica

・ロト ・ 理 ト ・ ヨ ト ・

Context

- Multi-Agent Systems (MAS)
- MAS + resource constraints
- Our proposal: *Priced* RB-ATL
 Model checking (lower bound)
 Optimization problem

ATL RB-ATL / RAL

PRB-ATL

→ E > < E</p>

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

Addition of bounds on resources to ATL

Extensions of ATL with bounds on resources

 $\langle \langle A^{\eta} \rangle \rangle \Box p$ Endowment: $\eta : A \to \mathbb{N}^r$ (r = number of resources)

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

ヘロマ ヘロマ ヘロマ

RB-ATL [Alechina, Logan, Nga, Rakib, AAMAS 2010]

Model checking RB-ATL is decidable in $O(|\varphi|^{2 \cdot r+1} \times |G|)$ No lower bound

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

ヘロト ヘ戸ト ヘヨト ヘヨト

RB-ATL [Alechina, Logan, Nga, Rakib, AAMAS 2010]

Model checking RB-ATL is decidable in $O(|\varphi|^{2 \cdot r+1} \times |G|)$ No lower bound

RAL [Bulling, Farwer, ECAI 2010]

Several logic variants, exploration of the (un)decidability border E.g., if actions produce resources, Model Checking is generally UNDECIDABLE

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

ヘロン 人間 とくほ とくほ とう

RB-ATL [Alechina, Logan, Nga, Rakib, AAMAS 2010]

Model checking RB-ATL is decidable in $O(|\varphi|^{2 \cdot r+1} \times |G|)$ No lower bound

RAL [Bulling, Farwer, ECAI 2010]

Several logic variants, exploration of the (un)decidability border E.g., if actions produce resources, Model Checking is generally UNDECIDABLE

Decidability [Alechina, Logan, Nga, Raimondi, ECAI 2014]

Under some conditions, RB \pm ATL (with production) is decidable No upper bound

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

RB-ATL [Alechina, Logan, Nga, Rakib, AAMAS 2010]

Model checking RB-ATL is decidable in $O(|\varphi|^{2 \cdot r+1} \times |G|)$ No lower bound

RAL [Bulling, Farwer, ECAI 2010]

Several logic variants, exploration of the (un)decidability border E.g., if actions produce resources, Model Checking is generally UNDECIDABLE

Decidability [Alechina, Logan, Nga, Raimondi, ECAI 2014]

Under some conditions, RB \pm ATL (with production) is decidable No upper bound

Unification [Alechina, Bulling, Logan, Nga, IJCAI 2015]

Unifying several approaches and exploring decidability borders

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

Formulae of RB-ATL are given by the grammar:

 $\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle \mathbf{A}^{\eta} \rangle \rangle \bigcirc \varphi \mid \langle \langle \mathbf{A}^{\eta} \rangle \rangle \varphi \mathcal{U} \varphi \mid \langle \langle \mathbf{A}^{\eta} \rangle \rangle \Box \varphi$

Formulae of RB-ATL predicate about abilities of coalitions whose agents are equipped with an endowment of resources

Formulae of RB-ATL are evaluated wrt:

- a resource-bounded game structure (or game arena) G
- a location q of G

A D A A D A A D A A D A

A resource-bounded game structure G is a weighted state transition graph:

- vertices labeled by atomic propositions
- in vertices agents choose actions
- possible combinations → transitions (edges of the graph)
- actions consume (and produce) resources

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

э

ヘロト ヘヨト ヘヨト

A resource-bounded game structure G is a weighted state transition graph:

- vertices labeled by atomic propositions
- in vertices agents choose actions
- possible combinations → transitions (edges of the graph)
- actions consume (and produce) resources

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Becoming friendly with RB-ATL

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

► Ξ → Q Q
 D. Della Monica

イロン 不同 とくほ とくほ とう

Becoming friendly with RB-ATL

$\langle\langle {\cal A}^\eta \rangle\rangle \bigcirc \langle\langle {\cal A}^{\eta'} \rangle\rangle \Box {\cal P}$

team *A*, equipped with endowment η , can force the next state to be s.t. team *A* itself, equipped with the new endowment η' , can guarantee that *p* always holds

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

ヘロア 人間 アメヨア 人口 ア

Becoming friendly with RB-ATL

$\langle\langle {\cal A}^\eta \rangle\rangle \bigcirc \langle\langle {\cal A}^{\eta'} \rangle\rangle \Box ho$

team *A*, equipped with endowment η , can force the next state to be s.t. team *A* itself, equipped with the new endowment η' , can guarantee that *p* always holds

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

ヘロア 人間 アメヨア 人口 ア
Becoming friendly with RB-ATL

$\langle\langle {\cal A}^\eta angle angle igodot \langle {\cal A}^{\eta'} angle angle \Box ho$

team *A*, equipped with endowment η , can force the next state to be s.t. team *A* itself, equipped with the new endowment η' , can guarantee that *p* always holds

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

ヘロン ヘアン ヘビン ヘビン

Becoming friendly with RB-ATL

$\langle\langle {\cal A}^\eta \rangle\rangle \bigcirc \langle\langle {\cal A}^{\eta'} \rangle\rangle \Box ho$

team A, equipped with endowment η , can force the next state to be s.t. team A itself, equipped with the new endowment η' , can guarantee that p always holds

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

ヘロン ヘアン ヘビン ヘビン

$\langle\langle {\cal A}^\eta \rangle\rangle \bigcirc \langle\langle {\cal A}^{\eta'} \rangle\rangle \Box ho$

team A, equipped with endowment η , can force the next state to be s.t. team A itself, equipped with the new endowment η' , can guarantee that p always holds

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

ヘロト 人間 ト ヘヨト ヘヨト

$\langle\langle {\cal A}^\eta \rangle\rangle \bigcirc \langle\langle {\cal A}^{\eta'} \rangle\rangle \Box ho$

team *A*, equipped with endowment η , can force the next state to be s.t. team *A* itself, equipped with the new endowment η' , can guarantee that *p* always holds

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

ヘロト ヘアト ヘビト ヘビト

$\langle\langle {\cal A}^\eta \rangle\rangle \bigcirc \langle\langle {\cal A}^{\eta'} \rangle\rangle \Box {\cal P}$

team *A*, equipped with endowment η , can force the next state to be s.t. team *A* itself, equipped with the new endowment η' , can guarantee that *p* always holds

ヘロト 人間 ト ヘヨト ヘヨト

Shared resources: Example

2 agents: **a** and **b** 1 resource type: **r**₁ $G, q_0 \Vdash \langle \langle a^\eta \rangle \rangle \Diamond p$

ヘロト ヘワト ヘビト ヘビト

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

► Ξ → Q Q
 D. Della Monica

Shared resources: Example

2 agents: **a** and **b** 1 resource type: **r**₁

 $G, q_0 \Vdash \langle \langle a^\eta \rangle \rangle \Diamond p$

・ロット (雪) () () () ()

false with private endowment $\eta(a) = any$ $\eta(b) > 0$

true with shared resources

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

▶ ₹ 𝒴𝔄
 D. Della Monica

Shared resources: Example

2 agents: **a** and **b** 1 resource type: **r**₁

 $G, q_0 \Vdash \langle \langle a^\eta \rangle \rangle \Diamond p$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

false with private endowment $\eta(a) = any$ $\eta(b) > 0$

true with shared resources

proponent has the ability of consuming all resources to make opponent weak

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

Outline

Context

Multi-Agent Systems (MAS)

MAS + resource constraints

Model checking (lower bound)Optimization problem

ATL RB-ATL / RAL

PRB-ATL

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

3

Public/shared resources + private ones (money)

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

イロン イロン イヨン イヨン

Public/shared resources + private ones (money)

- \Rightarrow global availability of resources on the market
 - a semantic component (part of the arena)
 - evolves depending on agents' actions (also opponent)
 - affects the choice of the actions (also opponent)

イロト イポト イヨト イヨト

Public/shared resources + private ones (money)

- \Rightarrow global availability of resources on the market
 - a semantic component (part of the arena)
 - evolves depending on agents' actions (also opponent)
 - affects the choice of the actions (also opponent)

\Rightarrow price of resources

- agents equipped with money (private resources)
- money for getting resources
- price of resources function of several components (take into account the history of the system)

ヘロト 人間 ト ヘヨト ヘヨト

Resources

part of the model

- represent the market (nature)
- public: agents draw on resources from a shared pool

known

• availability checked for all agents

Money

inside the formula

- assigned to agents
- private: any agent has his own amount of money
- unknown
- availability checked for proponent's agents only

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(1)

Resources

part of the model

- represent the market (nature)
- public: agents draw on resources from a shared pool

known

• availability checked for all agents

Money

• inside the formula

assigned to agents

- private: any agent has his own amount of money
- unknown
- availability checked for proponent's agents only

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(4) (3) (4) (3)

Resources

- part of the model
- represent the market (nature)
- public: agents draw on resources from a shared pool

known

• availability checked for all agents

Money

- inside the formula
- assigned to agents
- private: any agent has his own amount of money
- unknown
- availability checked for proponent's agents only

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ E > < E</p>

Resources

- part of the model
- represent the market (nature)
- public: agents draw on resources from a shared pool

known

• availability checked for all agents

Money

- inside the formula
- assigned to agents
- private: any agent has his own amount of money

unknown

 availability checked for proponent's agents only

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(4) (3) (4) (3)

Resources

- part of the model
- represent the market (nature)
- public: agents draw on resources from a shared pool
- known
- availability checked for all agents

Money

- inside the formula
- assigned to agents
- private: any agent has his own amount of money
- unknown
- availability checked for proponent's agents only

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(4) (3) (4) (3)

Resources

- part of the model
- represent the market (nature)
- public: agents draw on resources from a shared pool
- known
- availability checked for all agents

Money

- inside the formula
- assigned to agents
- private: any agent has his own amount of money

・ロト ・ 同ト ・ ヨト ・ ヨト

- unknown
- availability checked for proponent's agents only

Money is a *meta-resource*

- buy resources
- unit of measurement

D. Della Monica

Resource production and decidability

Alechina, Logan, Nga, Rakib, AAMAS 2010

Actions can **only consume** resources

Bulling, Farwer, ECAI 2010

If actions produce resources, Model Checking is generally UNDECIDABLE

Alechina, Logan, Nga, Raimondi, ECAI 2014

Under some conditions, RB \pm ATL (with production) is decidable

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

・ロット (雪) () () () ()

Resource production and decidability

Alechina, Logan, Nga, Rakib, AAMAS 2010

Actions can **only consume** resources

Bulling, Farwer, ECAI 2010

If actions produce resources, Model Checking is generally UNDECIDABLE

Alechina, Logan, Nga, Raimondi, ECAI 2014

Under some conditions, RB \pm ATL (with production) is decidable

Actions may produce resources...

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

ヘロン ヘアン ヘビン ヘビン

Resource production and decidability

Alechina, Logan, Nga, Rakib, AAMAS 2010

Actions can **only consume** resources

Bulling, Farwer, ECAI 2010

If actions produce resources, Model Checking is generally UNDECIDABLE

Alechina, Logan, Nga, Raimondi, ECAI 2014

Under some conditions, RB \pm ATL (with production) is decidable

Actions may produce resources... but not so much!!!

- model checking decidable
- several models fit

(e.g. memory usage, leasing a car, releasing resources previously acquired)

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Formulae of PRB-ATL are given by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle \boldsymbol{A}^{\$} \rangle \rangle \bigcirc \varphi \mid \langle \langle \boldsymbol{A}^{\$} \rangle \rangle \varphi \mathcal{U} \varphi \mid \langle \langle \boldsymbol{A}^{\$} \rangle \rangle \Box \varphi$$

Formulae of PRB-ATL predicate about abilities of coalitions whose agents are equipped with an amount of money

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

イロト イポト イヨト イヨ

Formulae of PRB-ATL are given by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle \boldsymbol{A}^{\$} \rangle \rangle \bigcirc \varphi \mid \langle \langle \boldsymbol{A}^{\$} \rangle \rangle \varphi \mathcal{U} \varphi \mid \langle \langle \boldsymbol{A}^{\$} \rangle \rangle \Box \varphi$$

Formulae of PRB-ATL predicate about abilities of coalitions whose agents are equipped with an amount of money

Formulae of PRB-ATL are evaluated wrt:

- a priced game structure (or game arena) G
- a location q of G
- a global availability of resources \vec{m}

A D N A B N A B N A

Priced game structure

A priced game structure G is a weighted state transition graph:

- vertices labeled by atomic propositions
- in vertices agents choose actions
- possible combinations → **transitions** (edges of the graph)
- actions consume and produce resources
- resources have a variable prices
- transition guards: also opponent

D. Della Monica

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Priced game structure

A priced game structure G is a weighted state transition graph:

- vertices labeled by atomic propositions
- in vertices agents choose actions
- possible combinations → **transitions** (edges of the graph)
- actions consume and produce resources
- resources have a variable prices
- transition guards: also opponent

D. Della Monica

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

Context

Multi-Agent Systems (MAS)

MAS + resource constraints

ATL RB-ATL / RAL

PRB-ATL

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

э

Theorem

The model checking problem for PRB-ATL is EXPTIME-complete

- membership (upper bound)
- hardness (lower bound)

[LAMAS 2011] [GandALF 2013]

ヘロト ヘワト ヘビト ヘビト

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

Theorem

The model checking problem for PRB-ATL is EXPTIME-complete

- membership (upper bound)
- hardness (lower bound)

[LAMAS 2011] [GandALF 2013]

ヘロト ヘワト ヘビト ヘビト

Reduction from the acceptance problem for Linearly-Bounded Alternating Turing Machine

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

The algorithm runs in time $O(|\varphi| \cdot |G| \cdot M^{r+n})$

Model checking is exponential in

- *n*: number of agents
- r: number of resources
- size of *M*: max. component in resource/money vectors (when represented in binary)

1st reduction: parametric in the size of M (n and r are constant) 2nd reduction: parametric in r (n and M are constant)

・ロト ・ 理 ト ・ ヨ ト ・

The algorithm runs in time $O(|\varphi| \cdot |G| \cdot M^{r+n})$

Model checking is exponential in

- *n*: number of agents
- r: number of resources
- size of *M*: max. component in resource/money vectors (when represented in binary)

1st reduction: parametric in the size of M (n and r are constant) 2nd reduction: parametric in r (n and M are constant)

3rd reduction: parametric in *n* (*r* and *M* are constant) OPEN PROBLEM

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

LB-ATM are Turing Machines

- linearly-bounded: tape length is bounded by a linear function of the size of the input word *w*
- alternating: existential and universal states

ヘロト 人間 ト ヘヨト ヘヨト

LB-ATM are Turing Machines

- linearly-bounded: tape length is bounded by a linear function of the size of the input word w
- alternating: existential and universal states

Acceptance condition:

- a computation from an existential state is accepting if at least one computation from that state is accepting
- a computation from a universal state is accepting if every computation from that state is accepting

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

LB-ATM are Turing Machines

- linearly-bounded: tape length is bounded by a linear function of the size of the input word *w*
- alternating: existential and universal states

Acceptance condition:

- a computation from an existential state is accepting if at least one computation from that state is accepting
- a computation from a universal state is accepting if every computation from that state is accepting

Configurations: (internal state, alphabet symbol in head cell)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

LB-ATM are Turing Machines

- linearly-bounded: tape length is bounded by a linear function of the size of the input word *w*
- alternating: existential and universal states

Acceptance condition:

- a computation from an existential state is accepting if at least one computation from that state is accepting
- a computation from a universal state is accepting if every computation from that state is accepting

Configurations: (internal state, alphabet symbol in head cell)

Finite control:
$$\langle \boldsymbol{q}, \lambda \rangle \rightarrow \langle \boldsymbol{r}_1, \nu_1, \sim_1 \rangle$$

 $\langle \boldsymbol{q}, \lambda \rangle \rightarrow \langle \boldsymbol{r}_2, \nu_2, \sim_2 \rangle$
 \dots
 $\langle \boldsymbol{s}, \gamma \rangle \rightarrow \dots$

. . .

 $q, s, r_i \in Q$: internal states $\lambda, \gamma, \nu_i \in \Sigma$: alphabet symbols $\sim_i \in \{\leftarrow, \rightarrow\}$: head movements

ヘロン 人間 とくほ とくほ とう

Sketch of the 1st reduction (I)

Encoding of instructions $\langle q, \lambda \rangle \rightarrow \langle r_i, \nu_i, \sim_i \rangle$ matching a full state $\langle q, \lambda \rangle$ *q* existential state *q* universal state

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

イロト イポト イヨト イヨト

Encoding of the tape

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

► E • • • • • •

イロト イポト イヨト イヨト
Sketch of the 1st reduction (II)

Module *shift_right_with_inc*

Module *plus_1*(μ_L)

Module *choose_next_state(i, \mu_L, \mu_R)*

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

э

Theorem

For each PRB-ATL formula φ , and each priced game structure *G*:

 $[\varphi] = [\varphi]^{ml}.$

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

<ロ> (四) (四) (三) (三) (三)

Outline

Context

Multi-Agent Systems (MAS)

- MAS + resource constraints
- Our proposal: *Priced* RB-ATL
 Model checking (lower bound)
 Optimization problem

ATL RB-ATL / RAL

PRB-ATL

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

э

• PRB-ATL:
$$\varphi = \langle \langle A_1^{\$_1} \rangle \rangle \Diamond (\langle \langle A_2^{\$_2} \rangle \bigcirc p \lor \langle \langle A_3^{\$_3} \rangle \rangle q \mathcal{U} p)$$

Definition (Cost of a PRB-ATL formula)

$$f_cost(\varphi) = \$_1(A_1) + \$_2(A_2) + \$_3(A_3)$$

• parametric PRB-ATL: $\varphi_{\vec{X}} = \langle \langle X_1^{\$_1} \rangle \rangle \Diamond (\langle \langle X_2^{\$_2} \rangle \bigcirc p \lor \langle \langle A_3^{\$_3} \rangle \rangle q \mathcal{U} p)$

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The Optimal Coalition problem

Definition (Optimal Coalition problem)

To determine minimal-cost coalitions that satisfy a PRB-ATL formula

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

イロト イポト イヨト イヨ

The Optimal Coalition problem

Definition (Optimal Coalition problem)

To determine minimal-cost coalitions that satisfy a PRB-ATL formula

Input:

- a parametric PRB-ATL formula
- a priced game structure
- a location
- an initial availability of resources

イロト イポト イヨト イヨ

The Optimal Coalition problem

Definition (Optimal Coalition problem)

To determine minimal-cost coalitions that satisfy a PRB-ATL formula

Input:

- a parametric PRB-ATL formula
- a priced game structure
- a location
- an initial availability of resources

Theorem

The Optimal Coalition problem is EXPTIME-complete

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

イロト イポト イヨト イヨト

Outline

Context

Multi-Agent Systems (MAS)

- MAS + resource constraints
- Our proposal: *Priced* RB-ATL
 Model checking (lower bound)
 Optimization problem

3 Conclusions and future work

ATL RB-ATL / RAL

PRB-ATL

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

3

Conclusions and future works

Conclusions

• Theorem: Model checking PRB-ATL is EXPTIME-complete Reachability for PRB-ATL is EXPTIME-complete

D. Della Monica

イロト イポト イヨト イヨト

Conclusions and future works

Conclusions

• Theorem: Model checking PRB-ATL is EXPTIME-complete Reachability for PRB-ATL is EXPTIME-complete

Future works

- 3rd reduction: parametric in *n* (*r* and *M* are constant)
- Exact complexity when actions cannot produce resources
 - Reachability is NP-hard
 - Model checking is PSPACE-hard
- Expressiveness comparative analysis wrt. other existing formalisms
- Resource-bounded extensions of other classical formalisms
 - µ-calculus
 ATL*

▶ ...

[Della Monica, Lenzi - ICAART 2012 ???

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Conclusions and future works

Conclusions

• Theorem: Model checking PRB-ATL is EXPTIME-complete Reachability for PRB-ATL is EXPTIME-complete

Future works

▶ ...

- 3rd reduction: parametric in *n* (*r* and *M* are constant)
- Exact complexity when actions cannot produce resources
 - Reachability is NP-hard
 - Model checking is PSPACE-hard
- Expressiveness comparative analysis wrt. other existing formalisms
- Resource-bounded extensions of other classical formalisms
 - μ-calculus [Della Monica, Lenzi ICAART 2012]
 ATL* ???

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Thank you!

Model checking coalitional games in shortage resource scenarios (LRBA @ ESSLLI 2015)

D. Della Monica

イロト イポト イヨト イヨト