Forgetting propositional formulas

David Fernández-Duque, Ángel Nepomuceno-Fernández, Enrique Sarrión-Morrillo, Fernando Soler-Toscano, Fernando R. Velázquez-Quesada

Workshop on Logics for Resource-Bounded Agents
ESSLLI 2015

Epistemic attitudes and their dynamics

Epistemic attitudes are subject to the effect of different epistemic actions.
For example, while beliefs can be affected by

- expansion (e.g., Rott 1989),
- contraction (e.g., Alchourrón et al. 1985),
- revision (e.g., Alchourrón et al. 1985, Rott 1989, Boutilier 1996, Leitgeb and Segerberg 2007, van Benthem 2007, Baltag and Smets 2008),
- merging (e.g., Konieczny and Pérez 2011) and
- diverse forms of inference (e.g., VQ 2014, VQ et al. 2013),
knowledge can be affected by
- deductive inference (VQ 2009, 2013),
- public (Plaza 1989, Gerbrandy and Groeneveld 1997) and other forms of announcements (Baltag et al. 1999).

Forgetting

An action that has not received much attention is that of forgetting and its effect on an agent's knowledge.

A possible reason: it is in some sense similar to belief contraction.

But still, when belief contraction is represented semantically, it typically relies on an (plausibility) ordering among theories.

This work proposes a dynamic epistemic logic (van Ditmarsch et al. 2007, van Benthem 2011) representation for an action of forgetting. (Source: Fernández-Duque et al. (2015).)

Some remarks

- Here, "forgetting π " is understood as "now I do not know π " (and not as "now I am unaware of π).
- This work focusses on forgetting whether ("now I do not know whether π ").
- This work uses relational models and represents the action with a model operation.
- Related work: forgetting atoms (van Ditmarsch et al. 2009), forgetting set of atoms (Lin and Reiter 1994, Zhang and Zhou 2009).

Semantic model and Language

Definition (Relational model)

A relational model M based on P is a tuple $\langle W, R, V\rangle$ where

- $W \neq \varnothing$ is a set of possible worlds;
- $R \subseteq(W \times W)$ is the agent's indistinguishability relation;
- $V: P \rightarrow \wp(W)$ is an atomic valuation.

The pair (M, w) with $w \in W$ is a possible worlds state and w is the evaluation point.

Definition (Language $\mathcal{L}_{\{\text {ㅁ\} }}$)

Formulas φ, ψ of the language $\mathcal{L}_{\{\square]}$ based on P are given by

$$
\varphi, \psi::=\top|p| \neg \varphi|\varphi \wedge \psi| \square \varphi
$$

with $p \in \mathrm{P}$. Other propositional constants (\perp), other propositional connectives $(\mathrm{V}, \rightarrow, \leftrightarrow)$ and the dual modal universal operator \diamond are defined as usual $(\diamond \varphi:=\neg \square \neg \varphi$ for the latter $)$.

SEmantic interpretation

Definition (Semantic interpretation)

Given (M, w) with $M=\langle W, R, V\rangle$, define 1 - as

$$
\begin{aligned}
& (M, w) \mathbb{F} p \quad \text { iff }_{\text {def }} \quad w \in V(p) \\
& (\boldsymbol{M}, \boldsymbol{w}) \boldsymbol{\Vdash} \neg \varphi \quad \text { iff def } \quad(\boldsymbol{M}, \boldsymbol{w}) \nVdash \varphi \\
& (\boldsymbol{M}, \boldsymbol{w}) \text { ㄶ } \varphi \wedge \psi \quad i f f_{\text {def }} \quad(\boldsymbol{M}, \boldsymbol{w}) \text { ㄴ } \varphi \text { and }(\boldsymbol{M}, \boldsymbol{w}) \text { ㄴ } \psi \\
& (M, w) \mathbb{1} \square \varphi \quad i f f_{\text {def }} \quad \text { for all } u \in W \text {, Rwu implies }(\boldsymbol{M}, u) \text { Ir } \varphi
\end{aligned}
$$

Validity ($\operatorname{lr} \varphi$) is defined as usual.

Some concepts

It will be useful to represent propositional formulas π in conjunctive normal form.

- A literal l is an atom (p) or its negation $(\neg p)$.
- A clause C is a finite (possibly empty) set of literals interpreted disjunctively ($\widehat{C}:=\bigvee C$).
- A propositional formula is in conjunctive normal form when it is given as a finite (possibly empty) set of clauses \mathcal{C} interpreted conjunctively $\left(\widehat{\mathbb{C}}:=\bigwedge_{C \in \mathcal{C}} V C\right.$).
- A clause C is tautological when there is p such that $\{p, \neg p\} \subseteq C$.
- A clause C is a consequence of π when $\mathbb{I} \pi \rightarrow \widehat{C}$.
- A clause C is a minimal consequence of π when it is a consequence of π and there is no $C^{\prime} \subset C$ such that $\mathbb{r} \pi \rightarrow \widehat{C^{\prime}}$.

Clausal form

Definition (Clausal form $\mathcal{C}(\pi)$)

Let π be propositional formula.

$$
\mathcal{C}(\pi):=\{C \mid C \text { is a clause which is a minimal non-tautological consequence of } \pi\}
$$

Note how, for any π, the set $\mathcal{C}(\pi)$ is finite, its elements are finite, and $\boldsymbol{r} \pi \leftrightarrow \widehat{\mathfrak{C}}(\pi)$.
Some simple examples:

π	$\mathcal{C}(\pi)$	π	$\mathcal{C}(\pi)$
$p \wedge q$	$\{\{p\},\{q\}\}$	$\neg(p \wedge q)$	$\{\{\neg p, \neg q\}\}$
$p \vee q$	$\{\{p, q\}\}$	$\neg(p \vee q)$	$\{\neg \neg p\},\{\neg q\}\}$
$p \rightarrow q$	$\{\{\neg p, q\}\}$	$\neg(p \rightarrow q)$	$\{\{p\},\{\neg q\}\}$
$p \leftrightarrow q$	$\{\{\neg p, q\},\{p, \neg q\}\}$	$\neg(p \leftrightarrow q)$	$\{\{p, q\},\{\neg p, \neg q\}\}$

The intuitive idea (1)

The initial observation.

- An agent knows φ when φ holds in all her epistemic alternatives.
- Thus, in order to 'forget' φ, she needs to consider as possible at least one world in which φ fails.

First, how to falsify a propositional formula π in a world w ?

- A given contingent propositional π can be falsified in different ways.
- If $\mathcal{C}(\pi)=\left\{C_{1}, \ldots, C_{n}\right\}$ is used, then there are $2^{n}-1$ different forms of falsifying π.
- A simpler 'minimal' approach is to falsify only one clause in $\mathcal{C}(\pi)$.

The intuitive idea (2)

Second: which will be the valuation for other atoms? Third: how many new worlds should we add?

- For the third: we make a copy of the current epistemic possibilities, falsifying the given clause in each one of them,
- For the second: we keep atoms not appearing in the clause as before.

In the resulting model, the original π has been uniformly falsified.

Two final details.

- This work deals with forgetting whether.
- To accommodate this, the operation works by falsifying any finite number of clauses.

Operation and semantic interpretation

Definition

Let $M=\langle W, \leq, V\rangle$ be a relational model; let $\mathcal{C}=\left\{C_{i} \mid i \in I\right\}$ be a finite set of non-tautological clauses ($0 \notin \mathrm{I}$).

The relational model $M^{\mathcal{C}}=\left\langle W^{\prime}, R^{\prime}, V^{\prime}\right\rangle$ is given by

- $W^{\prime}:=W \times(\{0\} \cup I)$,
- for all $w, u \in W$ and $i, j \in(\{0\} \cup I)$,

$$
R^{\prime}(w, i)(u, j) \quad i f f_{d e f} \quad R w u
$$

- for every $p \in \mathrm{P}, w \in W$ and $i \in(\{0\} \cup I)$,

$$
\begin{array}{rll}
(w, 0) \in V^{\prime}(p) & \text { iff }_{\text {def }} & w \in V(p) \\
(w, i) \in V^{\prime}(p) & \text { iffdef }_{\text {def }} & \{p, \neg p\} \cap C_{i}=\varnothing \text { and } w \in V(p), \text { or } \neg p \in C_{i} ;
\end{array}
$$

Definition (Semantic interpretation)

Example 1

Recall: | $\mathcal{C}(p)$ | $=\{\{p\}\}$ | | (so $\left.C_{1}=\{p\}\right)$ |
| ---: | :--- | ---: | :--- |
| $\mathcal{C}(\neg p)$ | $=\{\{\neg p\}\}$ | | (so $\left.C_{2}=\{\neg p\}\right)$ |

$\left(M^{\{\mid p\},\{\neg p\}\rangle},(w, 0)\right) \operatorname{Ir} \neg \square p \wedge \neg \square \neg p$

Basic result

LEMMA

Let $M=\langle W, \leq, V\rangle$ be a relational model; let $\mathcal{C}=\left\{C_{i} \mid i \in I\right\}$ be a finite (possibly empty) set of clauses ($0 \notin I$).

For any $w \in W$ and any $i \in I$,

$$
\left(M^{\mathcal{E}},(w, i)\right) \nVdash \widehat{C}_{i}
$$

Proposition

For any contingent propositional formula π,

$$
\text { IF }\langle\ddagger \pi\rangle(\square \neg \pi \vee \square \pi) \leftrightarrow \square \perp
$$

(i.e., \mathbf{S} I $[\ddagger \pi](\neg \square \pi \wedge \neg \square \neg \pi))$

Tautologies and contradictions

If π is a (propositional) tautology T ,

- $\mathcal{C}(T)=\varnothing$ so,
- by vacuity, $\left(M^{\left\{C_{1}, C_{2}\right\}},(w, 0)\right)$ Ir φ for all $C_{1} \in \mathcal{C}(T), C_{2} \in \mathcal{C}(\neg T)$.
- Thus, 나 $[\ddagger \top] \varphi$ (but ㄴ $\neg\langle\ddagger \top\rangle \varphi$).

If π is a (propositional) contradiction \perp,

- $\mathcal{C}(\neg \perp)=\varnothing$ so,
- by vacuity, $\left(M^{\left\{C_{1}, C_{2}\right\}},(w, 0)\right)$ Ir φ for all $C_{1} \in \mathcal{C}(\perp), C_{2} \in \mathcal{C}(\neg \perp)$.
- Thus, 나 $\ddagger \ddagger \perp \varphi$ (but $\stackrel{\rightharpoonup}{ } \neg\langle\ddagger \perp\rangle \varphi$).

Example 2

$$
\begin{aligned}
\mathcal{C}(p \rightarrow q) & =\{\{\neg p, q\}\} & & \left(\text { so } C_{1}=\{\neg p, q\}\right) \\
\mathcal{C}(\neg(p \rightarrow q)) & =\{\{p\},\{\neg q\}\} & & \text { (so } \left.C_{2}=\{p\} \text { or } C_{2}=\{\neg q\}\right)
\end{aligned}
$$

$(w, 0)$ Ir $\diamond(\neg p \wedge q \wedge \diamond(p \wedge q))$

$(w, 0) \nVdash \diamond(\neg p \wedge q \wedge \diamond(p \wedge q))$

Example 3

$$
\left.\begin{array}{rlrl}
\mathcal{C}(p \wedge q) & =\{\{p\},\{q\}\} & & \text { (so } \left.C_{1}=\{p\} \text { or } C_{1}=\{q\}\right) \\
\mathcal{C}(\neg(p \wedge q)) & =\{\{\neg p, \neg q\}\} & & \left(\text { so } C_{2}\right.
\end{array}=\{\neg p, \neg q\}\right)
$$

$(w, 0) \stackrel{I}{f} \neg \square(p \wedge q) \wedge \neg \square \neg(p \wedge q)$ $(w, 0)$ ㅏ $\diamond(\neg p \wedge \neg q)$

SEmANTIC INTERPRETATION AND BASIC RESULT

A simpler "forgetting that" action.

Definition (Semantic interpretation)

$$
(M, w) \text { r }[\dagger \pi] \varphi \quad \text { iff }_{\text {def }} \quad\left(M^{\{C\}},(w, 0)\right) \text { ir } \varphi \text { for all } C \in \mathcal{C}(\pi)
$$

Proposition

For any contingent propositional formula π,

$$
\mathbb{H}\langle\dagger \pi\rangle \square \pi \leftrightarrow \square \perp
$$

(i.e., S Ir $[\dagger \pi] \neg \square \pi$)

Forgetting whether and forgetting that

FACT

The formula $[\ddagger \pi] \varphi \leftrightarrow[\dagger \pi][\dagger \neg \pi] \varphi$ is not valid.
Proof Take $\pi:=\neg(p \wedge q)$, so $\mathcal{C}(\neg(p \wedge q))=\{\{\neg p, \neg q\}\}$ and $\mathcal{C}(p \wedge q)=\{\{p\}$, $\{q\}\}$.

Tautologies and contradictions

As before, if π is a (propositional) tautology T,

- $\mathcal{C}(T)=\varnothing$ so,
- by vacuity, $\left(M^{\{C\}},(w, 0)\right)$ Ir φ for all $C \in \mathcal{C}(T)$.
- Thus, $\mathfrak{I r}[\dagger \top] \varphi$ (but It $\neg\langle\dagger \top\rangle \varphi$).

But now, if π is a (propositional) contradiction \perp,

- $\mathcal{C}(\perp)=\{\varnothing\}$ so
- Thus, $\mathbb{I r}[\dagger \perp] \varphi \leftrightarrow\langle\dagger \perp\rangle \varphi$.
- Nevertheless, $\left.\left(\boldsymbol{M}^{\{\varnothing\rangle},(w, 0)\right) \stackrel{(}{-}, w\right)$, so Ir $\varphi \leftrightarrow[\dagger \perp] \varphi$.

Attempt 1: condition for where to evaluate φ

Definition (Semantic interpretation)

$$
(M, w) \mathbb{r}\left[\dagger^{\prime} \pi\right] \varphi \quad \text { iff } \text { def } \quad \begin{cases}\left(M^{\{C\}},(w, 0)\right) \Vdash r \varphi \text { for all } C \in \mathcal{C}(\pi) & \text { if }(M, w) \Vdash r \square \pi \\ (M, w) \Vdash r \varphi & \text { otherwise }\end{cases}
$$

Note how, from $\left\langle\dagger^{\prime} \pi\right\rangle \varphi:=\neg\left[\dagger^{\prime} \pi\right] \neg \varphi$,

$$
(M, w) \text { ㅏ }\left\langle\dagger^{\prime} \pi\right\rangle \varphi \text { iff }\left\{\begin{array}{l}
(M, w) \text { 卉 } \square \pi \text { and }\left(M^{|C|},(w, 0)\right) \text { r } \varphi \text { for some } C \in \mathcal{C}(\pi) \text {, or } \\
(M, w) \text { IF } \neg \square \pi \wedge \varphi
\end{array}\right.
$$

Proposition

For any contingent propositional formula π,

$$
\text { If }\left[\dagger^{\prime} \pi\right] \varphi \leftrightarrow((\square \pi \rightarrow[\dagger \pi] \varphi) \wedge(\neg \square \pi \rightarrow \varphi))
$$

Аtтempt 1: relation with public announcement

Assuming the standard definition for $M_{!\chi}$ and $[!\chi] \varphi$,

FACT

The formula $\varphi \rightarrow\left[\dagger^{\prime} \pi\right][!\pi] \varphi$ is not valid.
Proof Take $\pi:=p$ and $\varphi:=\diamond \neg p$. By previous proposition,

$$
\left(\diamond \neg p \rightarrow\left[\dagger^{\prime} p\right][!p] \diamond \neg p\right) \leftrightarrow(\diamond \neg p \rightarrow((\square p \rightarrow[\dagger p][!p] \diamond \neg p) \wedge(\neg \square p \rightarrow[!p] \diamond \neg p)))
$$

But consider

$(\boldsymbol{M}, \boldsymbol{w})$ ㅏ $\diamond \neg p$ but also $(\boldsymbol{M}, \boldsymbol{w})$ ㅘ $\neg \square p \wedge\langle!p\rangle \neg \diamond \neg p$, i.e. $(\boldsymbol{M}, \boldsymbol{w}) \nVdash \neg \square p \rightarrow[!p] \diamond \neg p$.

Attempt 2: condition for whether to evaluate φ

Definition (Semantic interpretation)

$$
\left.(M, w) \Vdash \Vdash^{\prime} \dagger^{\prime} \pi\right] \varphi \quad \text { iff }_{\text {def }} \quad(M, w) \Vdash r \square \pi \quad \text { implies } \quad\left(M^{\{C\}},(w, 0)\right) \Vdash \varphi \text { for all } C \in \mathcal{C}(\pi)
$$

Note how, from $\left\langle\dagger^{\prime} \pi\right\rangle \varphi:=\neg\left[\dagger^{\prime} \pi\right] \neg \varphi$,

$$
\left.(M, w) \Vdash \Vdash^{\prime} \pi\right\rangle \varphi \quad \text { iff } \quad(M, w) \Vdash r \square \pi \quad \text { and } \quad\left(\boldsymbol{M}^{\{C\}},(w, 0)\right) \Vdash r \varphi \text { for some } C \in \mathcal{C}(\pi)
$$

Proposition

For any contingent propositional formula π,

$$
\mathbb{H}\left[\dagger^{\prime} \pi\right] \varphi \leftrightarrow(\square \pi \rightarrow[\dagger \pi] \varphi)
$$

Аtтempt 2: relation with public announcement

Assuming the standard definition for $M_{!\chi}$ and $[!\chi] \varphi$,

Proposition

$$
\mathbf{T} \Vdash \varphi \rightarrow\left[\dagger^{\prime} \pi\right][!\pi] \varphi
$$

SEmANTIC INTERPRETATION AND A PROPERTY

Definition (Semantic interpretation)

$$
(M, w) \Vdash r\left[+^{\bullet} \pi\right] \varphi \quad \text { iff def } \quad\left(M^{\mathrm{C}(\pi)},(w, 0)\right) \Vdash(\varphi
$$

Note how, from $\left\langle\dagger^{\bullet} \pi\right\rangle \varphi:=\neg\left[\dagger^{\bullet} \pi\right] \neg \varphi$,

FACT

The formula $[\dagger(p \wedge q)](\neg \square p \wedge \neg \square q)$ is not valid.

Proposition

$$
\mathbb{F}^{[}\left[\dagger^{\bullet}(p \wedge q)\right](\neg \square p \wedge \neg \square q)
$$

Up to now...

- A model operation representing forgetting whether for propositional formulas.
- Minimal conjunctive normal form is used.
- Some variations explored.

. . . AND YET TO DO/FINISH

- A model operation representing the forgetting of modal formulas.
- Derivation system still missing for some variations.
- Multiagent versions, as, e.g., public and private individual forgetting, or collective forgetting.
- Proper comparison of proposal with related approaches (e.g., belief contraction).
C. E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory change: Partial meet contraction and revision functions. The Journal of Symbolic Logic, 50(2):510-530, 1985. Dor: 10.2307/2274239.
A. Baltag and S. Smets. A qualitative theory of dynamic interactive belief revision. In Logic and the Foundations of Game and Decision Theory (LOFT7), pages 13-60. Amsterdam University Press, 2008. ISBN 978-90 89640260.
A. Baltag, L. S. Moss, and S. Solecki. The logic of public announcements, common knowledge and private suspicions. Technical Report SEN-R9922, CWI, Amsterdam, 1999.
J. van Benthem. Dynamic logic for belief revision. Journal of Applied Non-Classical Logics, 17(2):129-155, 2007. Doi: 10.3166/jancl.17.129-155.
J. van Benthem. Logical Dynamics of Information and Interaction. Cambridge University Press, 2011. ISBN 978-0-521-76579-4.
C. Boutilier. Iterated revision and minimal change of conditional beliefs. Journal of Philosophical Logic, 25(3):263-305, 1996. Dor: 10.1007/BF00248151.
H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic. Springer, 2007. ISBN 978-1-4020-5838-7.
H. van Ditmarsch, A. Herzig, J. Lang, and P. Marquis. Introspective forgetting. Synthese (KRA), 169(2):405-423, 2009. DoI: 10.1007/s11229-009-9554-4.
D. Fernández-Duque, Á. Nepomuceno-Fernández, E. Sarrión-Morrillo, F. Soler-Toscano, and F. R. Velázquez-Quesada. Forgetting complex propositions. Under submission, 2015. url: http://arxiv.org/abs/1507.01111.
J. Gerbrandy and W. Groeneveld. Reasoning about information change. Journal of Logic, Language, and Information, 6(2):147-196, 1997. DoI: 10.1023/A:1008222603071.
S. Konieczny and R. P. Pérez. Logic based merging. Journal of Philosophical Logic, 40(2):239-270, 2011. Dor: 10.1007/s10992-011-9175-5.
H. Leitgeb and K. Segerberg. Dynamic doxastic logic: why, how, and where to? Synthese, 155(2):167-190, 2007. Dor: 10.1007/s11229-006-9143-8.
F. Lin and R. Reiter. Forget it! In Proceedings of the AAAI Fall Symposium on Relevance, pages 154-159, 1994.
J. A. Plaza. Logics of public communications. In Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems, pages 201-216, Tennessee, USA, 1989. Oak Ridge National Laboratory, ORNL/DSRD-24.
H. Rott. Conditionals and theory change: revisions, expansions, and additions. Synthese, 81(1):91-113, 1989. Dor: 10.1007/BF00869346.
F. R. Velázquez-Quesada. Inference and update. Synthese (KRA), 169(2): 283-300, 2009. DoI: 10.1007/s11229-009-9556-2.
F. R. Velázquez-Quesada. Explicit and implicit knowledge in neighbourhood models. In LORI, volume 8196 of Lecture Notes in Computer Science, pages 239-252. Springer, 2013. ISBN 978-3-642-40947-9. Doi: 10.1007/978-3-642-40948-6_19.
F. R. Velázquez-Quesada. Dynamic epistemic logic for implicit and explicit beliefs. Journal of Logic, Language and Information, 23(2): 107-140, 2014. Doi: 10.1007/s10849-014-9193-0.
F. R. Velázquez-Quesada, F. Soler-Toscano, and

Á. Nepomuceno-Fernández. An epistemic and dynamic approach to abductive reasoning: abductive problem and abductive solution. Journal of Applied Logic, 11(4):505-522, 2013. Doi: 10.1016/j.jal.2013.07.002.
Y. Zhang and Y. Zhou. Knowledge forgetting: Properties and applications. Artificial Intelligence, 173(16-17):1525-1537, 2009. Dor: 10.1016/j.artint.2009.07.005.

