	Forgetting whether 00000000		

Forgetting propositional formulas

David Fernández-Duque, Ángel Nepomuceno-Fernández, Enrique Sarrión-Morrillo, Fernando Soler-Toscano, Fernando R. Velázquez-Quesada

> Workshop on Logics for Resource-Bounded Agents ESSLLI 2015

Introduction •00	Forgetting whether		

EPISTEMIC ATTITUDES AND THEIR DYNAMICS

Epistemic attitudes are subject to the effect of different *epistemic actions*.

For example, while *beliefs* can be affected by

- expansion (e.g., Rott 1989),
- contraction (e.g., Alchourrón et al. 1985),
- *revision* (e.g., Alchourrón et al. 1985, Rott 1989, Boutilier 1996, Leitgeb and Segerberg 2007, van Benthem 2007, Baltag and Smets 2008),
- merging (e.g., Konieczny and Pérez 2011) and
- diverse forms of *inference* (e.g., VQ 2014, VQ et al. 2013),

knowledge can be affected by

- deductive inference (VQ 2009, 2013),
- public (Plaza 1989, Gerbrandy and Groeneveld 1997) and other forms of announcements (Baltag et al. 1999).

Introduction 000	Forgetting whether		

Forgetting

An action that has not received much attention is that of *forgetting* and its effect on an agent's *knowledge*.

A possible reason: it is in some sense similar to *belief contraction*.

But still, when *belief contraction* is represented semantically, it typically relies on an (plausibility) ordering among theories.

This work proposes a *dynamic epistemic logic* (van Ditmarsch et al. 2007, van Benthem 2011) representation for an action of *forgetting*. (Source: Fernández-Duque et al. (2015).)

Introduction	Forgetting whether		

Some remarks

- Here, "forgetting π " is understood as "now I do not know π " (and not as "now I am unaware of π).
- This work focusses on *forgetting whether* ("*now I do not know whether* π ").
- This work uses *relational models* and represents the action with a *model operation*.
- *Related work*: forgetting *atoms* (van Ditmarsch et al. 2009), forgetting *set of atoms* (Lin and Reiter 1994, Zhang and Zhou 2009).

	Basic definitions	Forgetting whether		
Epistemic logic				

Semantic model and language

DEFINITION (RELATIONAL MODEL)

A relational model M based on P is a tuple $\langle W, R, V \rangle$ where

- *W* ≠ Ø is a set of *possible worlds*;
- $R \subseteq (W \times W)$ is the agent's indistinguishability relation;
- $V : \mathbf{P} \to \wp(W)$ is an atomic valuation.

The pair (M, w) *with* $w \in W$ *is a possible worlds state and w is the evaluation point.*

Definition (Language $\mathcal{L}_{[\Box]}$)

Formulas φ, ψ *of the language* $\mathcal{L}_{[\Box]}$ *based on* **P** *are given by*

 $\varphi, \psi ::= \top \mid p \mid \neg \varphi \mid \varphi \land \psi \mid \Box \varphi$

with $p \in \mathbb{P}$. Other propositional constants (\bot) , other propositional connectives $(\lor, \rightarrow, \leftrightarrow)$ and the dual modal universal operator \diamondsuit are defined as usual $(\diamondsuit \varphi := \neg \Box \neg \varphi$ for the latter).

	Basic definitions $0 \bullet 0 \circ$	Forgetting whether		
Epistemic logic				

Semantic interpretation

DEFINITION (SEMANTIC INTERPRETATION)

Given (M, w) with $M = \langle W, R, V \rangle$, define \Vdash as

 $\begin{array}{ll} (M,w) \Vdash p & iff_{def} \quad w \in V(p) \\ (M,w) \Vdash \neg \varphi & iff_{def} \quad (M,w) \nvDash \varphi \\ (M,w) \Vdash \varphi \wedge \psi & iff_{def} \quad (M,w) \Vdash \varphi \ and \ (M,w) \Vdash \psi \\ (M,w) \Vdash \Box \varphi & iff_{def} \quad for \ all \ u \in W, \ Rwu \ implies \ (M,u) \Vdash \varphi \end{array}$

Validity ($\mathbf{I} \cdot \boldsymbol{\varphi}$) *is defined as usual.*

	Basic definitions $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	Forgetting whether		
Normal form				

Some concepts

It will be useful to represent propositional formulas π in conjunctive normal form.

- A *literal l* is an atom (*p*) or its negation (¬*p*).
- A *clause C* is a finite (possibly empty) set of literals interpreted disjunctively $(\widehat{C} := \bigvee C)$.
- A propositional formula is in *conjunctive normal form* when it is given as a finite (possibly empty) set of clauses C interpreted conjunctively ($\widehat{C} := \bigwedge \bigvee C$).
- A clause *C* is *tautological* when there is *p* such that $\{p, \neg p\} \subseteq C$.
- A clause *C* is a *consequence* of π when $\Vdash \pi \to \widehat{C}$.
- A clause *C* is a *minimal consequence* of π when it is a consequence of π and there is no $C' \subset C$ such that $\Vdash \pi \to \widehat{C'}$.

	Basic definitions	Forgetting whether		
Normal form				

CLAUSAL FORM

Definition (Clausal form $\mathcal{C}(\pi)$)

Let π be propositional formula.

 $\mathcal{C}(\pi) := \{C \mid C \text{ is a clause which is a minimal non-tautological consequence of } \pi \}$

Note how, for any π , the set $\mathcal{C}(\pi)$ is finite, its elements are finite, and $\mathbf{I} \to \widehat{\mathcal{C}}(\pi)$.

Some simple examples:	

π	C (π)	π	C (π)
$p \land q$	{{ p }, { q }}	$\neg (p \land q)$	{{¬p,¬q}}
$p \lor q$	{{ p , q }}	$\neg(p \lor q)$	{{¬ p }, {¬ q }}
$p \rightarrow q$	{{¬ <i>p,q</i> }}	$\neg(p \rightarrow q)$	{{ p }, {¬ q }}
$p \leftrightarrow q$	{{¬p,q},{p,¬q}}	$\neg(p \leftrightarrow q)$	{{ p , q },{¬ p ,¬ q }}

	Forgetting whether		
The definitions			

The intuitive idea (1)

The initial observation.

- An agent *knows* φ when φ holds in *all her epistemic alternatives*.
- Thus, in order to 'forget' φ, she needs to consider as possible at least one world in which φ fails.

First, *how to falsify* a propositional formula π *in a world w*?

- A given *contingent* propositional π can be falsified in different ways.
- If $\mathcal{C}(\pi) = \{C_1, \dots, C_n\}$ is used, then there are $2^n 1$ different forms of falsifying π .
- A simpler 'minimal' approach is *to falsify only one clause* in $\mathcal{C}(\pi)$.

The intuitive idea (2)

Second: which will be the valuation for other atoms? Third: how many new worlds should we add?

- For the third: we *make a copy of* the current *epistemic possibilities, falsifying the given clause* in each one of them,
- For the second: we *keep atoms not appearing in the clause as before*.

In the resulting model, the original π has been *uniformly* falsified.

Two final details.

- This work deals with *forgetting whether*.
- To accommodate this, the operation works by *falsifying any finite number of clauses*.

	Forgetting whether		
	000000		
The definitions			

Operation and semantic interpretation

Definition

Let $M = \langle W, \leq, V \rangle$ be a relational model; let $\mathbb{C} = \{C_i \mid i \in I\}$ be a finite set of non-tautological clauses $(0 \notin I)$.

The relational model $M^{\mathbb{C}} = \langle W', R', V' \rangle$ is given by

- $W' := W \times (\{0\} \cup I),$
- for all $w, u \in W$ and $i, j \in (\{0\} \cup I)$,

R'(w,i)(u,j) iff_{def} Rwu

• for every $p \in \mathbf{P}$, $w \in W$ and $i \in (\{0\} \cup I)$,

 $\begin{aligned} (w,0) \in V'(p) & iff_{def} & w \in V(p) \\ (w,i) \in V'(p) & iff_{def} & \{p,\neg p\} \cap C_i = \emptyset \text{ and } w \in V(p), \text{ or } \neg p \in C_i; \end{aligned}$

DEFINITION (SEMANTIC INTERPRETATION)

 $(M,w)\Vdash [\ddagger\pi]\varphi \qquad iff_{def} \qquad (M^{\{C_1,C_2\}},(w,0))\Vdash \varphi \ \ for \ all \ C_1\in {\mathbb C}(\pi), C_2\in {\mathbb C}(\neg\pi)$

	Forgetting whether		
The definitions			

Example 1

Recall:

‡p

 $(M, w) \Vdash \Box p$ $(M, w) \Vdash [\ddagger p] (\neg \Box p \land \neg \Box \neg p)$

 $(M^{\{\{p\},\{\neg p\}\}},(w,0)) \Vdash \neg \Box p \land \neg \Box \neg p$

	Forgetting whether		
Some properties			

BASIC RESULT

Lemma

Let $M = \langle W, \leq, V \rangle$ be a relational model; let $\mathbb{C} = \{C_i \mid i \in I\}$ be a finite (possibly empty) set of clauses $(0 \notin I)$.

For any $w \in W$ and any $i \in I$,

 $(M^{\mathcal{C}}, (w, i)) \nvDash \widehat{C_i}$

Proposition

For any contingent propositional formula π ,

 $\Vdash \langle \ddagger \pi \rangle (\Box \neg \pi \lor \Box \pi) \leftrightarrow \Box \bot$

 $(i.e., \mathbf{S} \Vdash [\ddagger\pi] (\neg \Box \pi \land \neg \Box \neg \pi))$

	Forgetting whether		
Some properties			

TAUTOLOGIES AND CONTRADICTIONS

- If π is a (propositional) tautology \top ,
 - $\mathcal{C}(\mathsf{T}) = \emptyset$ so,
 - by vacuity, $(M^{\{C_1,C_2\}}, (w, 0)) \Vdash \varphi$ for all $C_1 \in \mathcal{C}(\top), C_2 \in \mathcal{C}(\neg \top)$.
 - Thus, $\Vdash [\ddagger \top] \varphi$ (but $\Vdash \neg \langle \ddagger \top \rangle \varphi$).

If π is a (propositional) contradiction \bot ,

- $\mathfrak{C}(\neg \bot) = \emptyset$ so,
- by vacuity, $(M^{\{C_1,C_2\}},(w,0)) \Vdash \varphi$ for all $C_1 \in \mathcal{C}(\bot), C_2 \in \mathcal{C}(\neg \bot)$.
- Thus, $\Vdash [\ddagger \bot] \varphi$ (but $\Vdash \neg \langle \ddagger \bot \rangle \varphi$).

	Forgetting whether		
Some properties			

EXAMPLE 2

 $\mathfrak{C}(p \to q) = \{\{\neg p, q\}\} \qquad (\text{so } C_1 = \{\neg p, q\})$ $\mathbb{C}(\neg (p \rightarrow q)) = \{\{p\}, \{\neg q\}\} \quad (\text{so } C_2 = \{p\} \text{ or } C_2 = \{\neg q\})$

 $M^{\{\{\neg \, p,q\},\{p\}\}}$

 $(w, 0) \Vdash \diamondsuit (\neg p \land q \land \diamondsuit (p \land q))$

 $M^{\{\{\neg p,q\},\{\neg q\}\}}$

 $(w, 0) \nvDash \diamond (\neg p \land q \land \diamond (p \land q))$

	Forgetting whether		
Some properties			

Example 3

 $w\Vdash \neg \Box (p \land q) \land \neg \Box \neg (p \land q)$

$$\begin{split} & \mathcal{C}(p \wedge q) = \{\{p\}, \{q\}\} & \quad (\text{so } C_1 = \{p\} \text{ or } C_1 = \{q\}) \\ & \mathcal{C}(\neg (p \wedge q)) = \{\{\neg p, \neg q\}\} & \quad (\text{so } C_2 = \{\neg p, \neg q\}) \end{split}$$

 $M^{\{\{p\},\{\neg p,\neg q\}\}}$

 $(w,0) \Vdash \neg \Box (p \land q) \land \neg \Box \neg (p \land q)$ $(w,0) \Vdash \diamondsuit (\neg p \land \diamondsuit p)$

 $M^{\{\{q\},\{\neg p,\neg q\}\}}$

 $(w,0) \Vdash \neg \Box (p \land q) \land \neg \Box \neg (p \land q)$ $(w,0) \Vdash \diamondsuit (\neg p \land \neg q)$

		Some variations	
		0000000	
Forgetting that			

Semantic interpretation and basic result

A simpler "forgetting that" action.

DEFINITION (SEMANTIC INTERPRETATION)

 $(M, w) \Vdash [\dagger \pi] \varphi$ iff_{def} $(M^{\{C\}}, (w, 0)) \Vdash \varphi$ for all $C \in \mathbb{C}(\pi)$

PROPOSITION

For any contingent propositional formula π ,

 $\Vdash \langle \dagger \pi \rangle \Box \pi \leftrightarrow \Box \bot$

 $(i.e., \mathbf{S} \Vdash [\intercal\pi] \neg \Box \pi)$

	Forgetting whether	Some variations	
Forgetting that			

Forgetting whether and forgetting that

Fact

The formula $[\ddagger \pi] \varphi \leftrightarrow [\ddagger \pi] [\ddagger \neg \pi] \varphi$ *is not valid.*

Proof Take $\pi := \neg (p \land q)$, so $\mathbb{C}(\neg (p \land q)) = \{\{\neg p, \neg q\}\}$ and $\mathbb{C}(p \land q) = \{\{p\}, \{q\}\}\}$.

	Forgetting whether	Some variations	
Forgetting that			

TAUTOLOGIES AND CONTRADICTIONS

As before, if π is a (propositional) tautology \top ,

• $\mathcal{C}(\mathsf{T}) = \emptyset$ so,

- by vacuity, $(M^{\{C\}}, (w, 0)) \Vdash \varphi$ for all $C \in \mathfrak{C}(\top)$.
- Thus, $\Vdash [\dagger \top] \varphi$ (but $\Vdash \neg \langle \dagger \top \rangle \varphi$).

But now, if π is a (propositional) contradiction \bot ,

- $\mathcal{C}(\bot) = \{\emptyset\}$ so
- Thus, **I** [† \bot] $\varphi \leftrightarrow \langle \dagger \bot \rangle \varphi$.
- Nevertheless, $(M^{\{\emptyset\}}, (w, 0)) \stackrel{\bullet}{\hookrightarrow} (M, w)$, so $\Vdash \varphi \leftrightarrow [\uparrow \bot] \varphi$.

			Some variations			
			0000000			
Conditional forgetting that						

Attempt 1: condition for *where* to evaluate φ

DEFINITION (SEMANTIC INTERPRETATION)

$(M,w) \Vdash [\dagger'\pi] \varphi$;#	$(M^{\{C\}}, (w, 0)) \Vdash \varphi$ for all $C \in \mathbb{C}(\pi)$	$\mathrm{if}(M,w)\Vdash \square\pi$
	^{IJJ} def	$(M,w) \Vdash \varphi$	otherwise

Note how, from $\langle \mathbf{t}' \pi \rangle \varphi := \neg [\mathbf{t}' \pi] \neg \varphi$,

$$(M,w) \Vdash \langle \dagger' \pi \rangle \varphi \quad \text{iff} \quad \begin{cases} (M,w) \Vdash \Box \pi \text{ and } (M^{[C]},(w,0)) \Vdash \varphi \text{ for some } C \in \mathcal{C}(\pi), \text{ or} \\ (M,w) \Vdash \neg \Box \pi \land \varphi \end{cases}$$

Proposition

For any contingent propositional formula π ,

$$\Vdash [\mathfrak{t}'\pi] \, \varphi \; \leftrightarrow \; \left((\Box \, \pi \to [\mathfrak{t}\pi] \, \varphi) \land (\neg \Box \, \pi \to \varphi) \right)$$

		Forgetting whether	Some variations			
Conditional forgetting that						

ATTEMPT 1: RELATION WITH *public announcement*

Assuming the standard definition for $M_{!\chi}$ and $[!\chi] \varphi$,

 $(M,w) \Vdash \Diamond \neg p \text{ but also } (M,w) \Vdash \neg \Box p \land \langle !p \rangle \neg \Diamond \neg p, i.e. \ (M,w) \nvDash \neg \Box p \rightarrow [!p] \Diamond \neg p.$

			Some variations			
			00000000			
Conditional forgetting that						

Attempt 2: condition for *whether* to evaluate φ

DEFINITION (SEMANTIC INTERPRETATION)

 $(M,w) \Vdash [\dagger'\pi] \varphi \quad iff_{def} \quad (M,w) \Vdash \Box \pi \quad implies \quad (M^{\{C\}},(w,0)) \Vdash \varphi \text{ for all } C \in \mathfrak{C}(\pi)$

Note how, from $\langle \dagger' \pi \rangle \varphi := \neg [\dagger' \pi] \neg \varphi$,

 $(M, w) \Vdash \langle \dagger' \pi \rangle \varphi$ iff $(M, w) \Vdash \Box \pi$ and $(M^{\{C\}}, (w, 0)) \Vdash \varphi$ for some $C \in \mathbb{C}(\pi)$

Proposition

For any contingent propositional formula π ,

```
\Vdash [\dagger' \pi] \varphi \iff (\Box \pi \rightarrow [\dagger \pi] \varphi)
```

		Forgetting whether	Some variations			
Conditional forgetting that						

ATTEMPT 2: RELATION WITH *public announcement*

Assuming the standard definition for $M_{!\chi}$ and $[!\chi] \varphi$,

Proposition

 $\mathsf{T}\Vdash\varphi\to[\mathsf{t}'\pi]\,[!\pi]\,\varphi$

STRONGLY FORGETTING	тнат			
000	0000	0000000	0000000	
			Some variations	

Semantic interpretation and a property

DEFINITION (SEMANTIC INTERPRETATION)

 $(M,w)\Vdash [\dagger^\bullet\pi]\,\varphi \quad i\!f\!f_{def} \quad (M^{\mathcal{C}(\pi)},(w,0))\Vdash\varphi$

Note how, from $\langle \dagger^{\bullet} \pi \rangle \varphi := \neg [\dagger^{\bullet} \pi] \neg \varphi$,

 $(M,w)\Vdash \langle \dagger^\bullet\pi\rangle\, \varphi \quad \text{iff} \quad (M^{\mathbb{C}(\pi)},(w,0))\Vdash \varphi$

Fact

The formula $[\uparrow (p \land q)] (\neg \Box p \land \neg \Box q)$ is not valid.

Proposition

 $\Vdash [\uparrow^{\bullet}(p \land q)] (\neg \Box p \land \neg \Box q)$

	Forgetting whether	Conclusions and ongoing work	

Up то Now . . .

- A model operation representing *forgetting whether* for *propositional* formulas.
- *Minimal conjunctive normal form* is used.
- Some *variations* explored.

	Forgetting whether	Conclusions and ongoing work	

... AND YET TO DO/FINISH

- A model operation representing the *forgetting* of *modal* formulas.
- *Derivation system* still missing for some variations.
- *Multiagent versions*, as, e.g., public and private *individual* forgetting, or *collective* forgetting.
- Proper *comparison* of proposal with related approaches (e.g., belief contraction).

		References

- C. E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory change: Partial meet contraction and revision functions. *The Journal of Symbolic Logic*, 50(2):510–530, 1985. DOI: 10.2307/2274239.
- A. Baltag and S. Smets. A qualitative theory of dynamic interactive belief revision. In Logic and the Foundations of Game and Decision Theory (LOFT7), pages 13–60. Amsterdam University Press, 2008. ISBN 978-90 8964 026 0.
- A. Baltag, L. S. Moss, and S. Solecki. The logic of public announcements, common knowledge and private suspicions. Technical Report SEN-R9922, CWI, Amsterdam, 1999.
- J. van Benthem. Dynamic logic for belief revision. Journal of Applied Non-Classical Logics, 17(2):129–155, 2007. DOI: 10.3166/jancl.17.129-155.
- J. van Benthem. Logical Dynamics of Information and Interaction. Cambridge University Press, 2011. ISBN 978-0-521-76579-4.
- C. Boutilier. Iterated revision and minimal change of conditional beliefs. *Journal of Philosophical Logic*, 25(3):263–305, 1996. DOI: 10.1007/BF00248151.
- H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic. Springer, 2007. ISBN 978-1-4020-5838-7.
- H. van Ditmarsch, A. Herzig, J. Lang, and P. Marquis. Introspective forgetting. *Synthese (KRA)*, 169(2):405–423, 2009. DOI: 10.1007/s11229-009-9554-4.
- D. Fernández-Duque, Á. Nepomuceno-Fernández, E. Sarrión-Morrillo, F. Soler-Toscano, and F. R. Velázquez-Quesada. Forgetting complex propositions. Under submission, 2015. URL: http://arxiv.org/abs/1507.01111.
- J. Gerbrandy and W. Groeneveld. Reasoning about information change. Journal of Logic, Language, and Information, 6(2):147–196, 1997. DOI: 10.1023/A:1008222603071.

- S. Konieczny and R. P. Pérez. Logic based merging. Journal of Philosophical Logic, 40(2):239–270, 2011. DOI: 10.1007/s10992-011-9175-5.
- H. Leitgeb and K. Segerberg. Dynamic doxastic logic: why, how, and where to? Synthese, 155(2):167–190, 2007. DOI: 10.1007/s11229-006-9143-8.
- F. Lin and R. Reiter. Forget it! In Proceedings of the AAAI Fall Symposium on Relevance, pages 154–159, 1994.
- J. A. Plaza. Logics of public communications. In Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems, pages 201–216, Tennessee, USA, 1989. Oak Ridge National Laboratory, ORNL/DSRD-24.
- H. Rott. Conditionals and theory change: revisions, expansions, and additions. Synthese, 81(1):91–113, 1989. DOI: 10.1007/BF00869346.
- F. R. Velázquez-Quesada. Inference and update. Synthese (KRA), 169(2): 283–300, 2009. DOI: 10.1007/s11229-009-9556-2.
- F. R. Velázquez-Quesada. Explicit and implicit knowledge in neighbourhood models. In LORI, volume 8196 of Lecture Notes in Computer Science, pages 239–252. Springer, 2013. ISBN 978-3-642-40947-9. DOI: 10.1007/978-3-642-40948-6-19.
- F. R. Velázquez-Quesada. Dynamic epistemic logic for implicit and explicit beliefs. Journal of Logic, Language and Information, 23(2): 107–140, 2014. DOI: 10.1007/s10849-014-9193-0.

F. R. Velázquez-Quesada, F. Soler-Toscano, and

Á. Nepomuceno-Fernández. An epistemic and dynamic approach to abductive reasoning: abductive problem and abductive solution. *Journal of Applied Logic*, 11(4):505–522, 2013. DOI: 10.1016/j.ia.2013.07.002.

Y. Zhang and Y. Zhou. Knowledge forgetting: Properties and applications. Artificial Intelligence, 173(16–17):1525–1537, 2009. DOI: 10.1016/j.artint.2009.07.005.