Model checking invariants for resource-bounded MAS with discounting

Hoang Nga Nguyen

LRBA 2015

Introduction

- Existing logics for resouce-bounded MAS concentrate on modelling costs of action wrt private and/or shared resources:
 - Private: each agent has a local storage for resources not accessible by other agents;
 - ► Shared: all agents can access a public storage for resources.
- Costs of computations (runs) are defined as the sum of costs of individual actions along the computations.
- However, costs can also be computed in other ways similar to calculating *payoff profiles* in Repeated Game Theory:
 - ► Discounting: action costs are gradually reduced by a discount factor ≤ 1.
- Our aim: using discounting in formulating and model checking invariant properties.

Syntax of RB±ATL with discounting

Resources and bounds

- Resources: $Res = \{res_1, \ldots, res_r\}$ for some $r \ge 1$
- Resource bounds: $B = (\mathbb{N} \cup \infty)^r$

Example: a system of autonomous satelites.

- ► Res = {electricity, fuel, oxygen} with number of resources r = 3.
- bound (2000, 100, 50) means not to spend spending more than 2000 units of electricity, 100 of fuel and 50 of oxygen.
- ▶ bound (2000, ∞, 50) means not to spend spending more than 2000 units of electricity, 50 of oxygen but there is no limitation on spending fuel.

Syntax

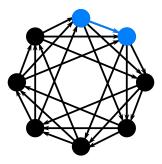
$dRB\pm ATL$

$$\begin{split} \varphi \leftarrow p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \\ & \langle\!\langle A^b \rangle\!\rangle \bigcirc \varphi \quad \text{A can enforce } \varphi \text{ next } \texttt{w/o spending} > b \\ & \langle\!\langle A^b \rangle\!\rangle \varphi \mathcal{U} \psi \quad \text{A can maintain } \varphi \text{ until } \psi \text{ w/o spending} > b \\ & \langle\!\langle A^b \rangle\!\rangle \Box_\beta \varphi \quad \text{A can maintain } \varphi \text{ forever } \texttt{w/o spending} > b \\ & \text{while cost is reduced by factor } \beta \in [0, 1] \end{split}$$

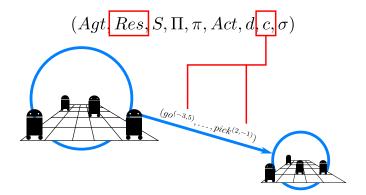
Semantics of dRB±ATL

Resource-bounded CGS

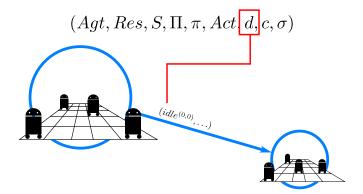
 $(Agt, Res, S, \Pi, \pi, Act, d, c, \sigma)$



Resource-bounded CGS



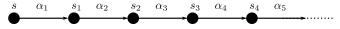
Resource-bounded CGS



Strategies, Computations and Costs

▶ Strategy:
$$F_A : S^+ \to Act^{|A|}$$
 st $\forall s : F_A(\lambda s) \in D_A(s)$

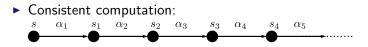
• Consistent computation from a state *s*:



Cost of computation:

Σ	c_{11}	c_{12}	c_{13}	c_{14}	c_{15}	
	c_{21}	c_{22}	c_{23}	c_{24}	c_{25}	
	÷	÷	÷	:	÷	
	c_{k1}	c_{k2}	c_{k3}	c_{k4}	c_{k5}	

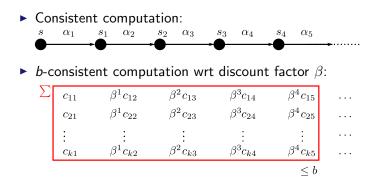
b-consistent computations



b-consistent computation:

Σ	c_{11}	c_{12}	c_{13}	c_{14}	c_{15}	
	c_{21}	c_{22}	c_{23}	c_{24}	c_{25}	
	:	:	:	:	:	•••
	c_{k1}	c_{k2}	c_{k3}	c_{k4}	c_{k5}	
					< b	

b-consistent computations wrt discount factor



Truth evaluation: dRB±ATL

- Boolean connectivities are standard;
- M, s ⊨ ⟨⟨A⟩⟩ φ iff there exists F_A st for any consistent λ from s : λ is b-consistent and M, λ[1] ⊨ φ;
- $M, s \models \langle\!\langle A \rangle\!\rangle \varphi \mathcal{U} \psi$ iff there exists F_A st for any consistent λ from $s : \lambda$ is *b*-consistent, $\exists i \ge 0 : M, \lambda[i] \models \psi$ and $\forall 0 \le j \le i : M, \lambda[j] \models \varphi$;
- M, s ⊨ ⟨⟨A⟩⟩□_βφ iff there exists F_A st ∀ consistent λ from s : λ is b-consistent wrt discount factor β and ∀i ≥ 0 : M, λ[i] ⊨ φ.

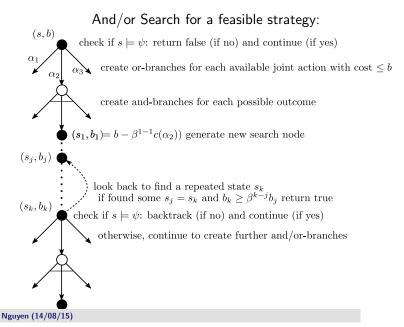
Model checking of dRB \pm ATL

- ▶ Input: M, s, φ .
- Output: Yes (if $M, s \models \varphi$) or No (otherwise).

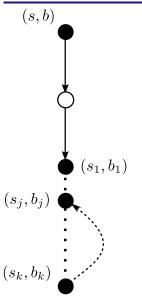
Outermost algorithm

function RB \pm ATL-LABEL(M, ϕ) for $\phi' \in Sub(\phi)$ do case $\phi' = p, \ \neg \psi, \ \psi_1 \wedge \psi_2$, $\langle\!\langle A \rangle\!\rangle \bigcirc \psi$. $\langle\!\langle A \rangle\!\rangle \psi_1 \mathcal{U} \psi_2$, $\langle\!\langle A \rangle\!\rangle \Box \psi$ inherited from ATL case $\phi' = \langle\!\langle A^b \rangle\!\rangle \bigcirc \psi, \langle\!\langle A^b \rangle\!\rangle \psi_1 \mathcal{U} \psi_2, \langle\!\langle A^b \rangle\!\rangle \Box_1 \psi$ inherited from RB±ATL case $\phi' = \langle\!\langle A^b \rangle\!\rangle \Box_\beta \psi$ where $\beta < 1$ $[\phi']_M \leftarrow \{ s \mid s \in S \land$ BOX-STRATEGY(*node*₀(s, b), $\langle \langle A^b \rangle \rangle \Box_\beta \psi$) return $[\phi]_M$

Illustrating BOX-STRATEGY



Towards correctness



- ► Essentially, BOX-STRATEGY looks for every and branch a loop, e.g., from s_k → s_j.
- To carry out this loop forever, we need to check if the resource bound b_k is large enough, i.e.,

$$b_k \geq rac{eta^{k-j}(b_j-b_k)}{1-eta^{k-j}} ext{ iff } b_k \geq eta^{k-j}b_j$$

Summary

- Introduced discounting to resource-bounded logic RB±ATL: on both syntactic and semantics level:
 - In the syntax, discounting factor is attached to box operator;
 - In the semantics, discounting factor is used for computing cost of infinite computations.
- Furture work:
 - Formalise the model checking algorithm, show correctness and termination;
 - Extend discounting to until operator.

Thank You!