Reversal-Bounded Counter Machines

Stéphane Demri

LSV, CNRS, ENS Cachan
Workshop on Logics for Resource-Bounded Agents, Barcelona, August 2015

Overview

Presburger Counter Machines

Reversal-Bounded Counter Machines

Verifying Temporal Properties

The Reversal-Boundedness Detection Problem

Presburger Counter Machines

Integer programs

- Finite-state automaton with counters interpreted by non-negative integers.

Integer programs

- Finite-state automaton with counters interpreted by non-negative integers.

- Many applications:
- Broadcast protocols, Petri nets, ...
- Programs with pointer variables.
[Bouajjani et al., CAV'06]
- Replicated finite-state programs.
[Kaiser \& Kroening \& Wahl, CAV'10]
- Relationships with data logics. [Bojańczyk et al., TOCL 11]

Integer programs

- Finite-state automaton with counters interpreted by non-negative integers.

- Many applications:
- Broadcast protocols, Petri nets, ...
- Programs with pointer variables.
[Bouajjani et al., CAV'06]
- Replicated finite-state programs.
[Kaiser \& Kroening \& Wahl, CAV'10]
- Relationships with data logics. [Bojańczyk et al., TOCL 11]
- Techniques for model-checking infinite-state systems are required for formal verification.
- But, integer programs can simulate Turing machines.
- Checking safety or liveness properties is undecidable.

Taming verification of counter machines

- Design of subclasses with decidable reachability problems
- Vector addition systems (\approx Petri nets) [Kosaraju, STOC'82]
- Flat relational counter machines. [Comon \& Jurski, CAV'98]
- Reversal-bounded counter machines. [lbarra, JACM 78]
- Flat affine counter machines with finite monoids.
[Boigelot, PhD 98; Finkel \& Leroux, FSTTCS'02]

Taming verification of counter machines

- Design of subclasses with decidable reachability problems
- Vector addition systems (\approx Petri nets) [Kosaraju, STOC'82]
- Flat relational counter machines. [Comon \& Jurski, CAV'98]
- Reversal-bounded counter machines. [Ibarra, JACM 78]
- Flat affine counter machines with finite monoids.
[Boigelot, PhD 98; Finkel \& Leroux, FSTTCS'02]
- Decision procedures
- Translation into Presburger arithmetic.
[Fribourg \& Olsén, CONCUR'97; Finkel \& Leroux, FSTTCS'02]
- Direct analysis on runs. [Rackoff, TCS 78]
- Approximating reachability sets.
[Karp \& Miller, JCSS 69]
- Well-structured transition systems.
[Finkel \& Schnoebelen, TCS 01]

Taming verification of counter machines

- Design of subclasses with decidable reachability problems
- Vector addition systems (\approx Petri nets) [Kosaraju, STOC'82]
- Flat relational counter machines. [Comon \& Jurski, CAV'98]
- Reversal-bounded counter machines. [Ibarra, JACM 78]
- Flat affine counter machines with finite monoids.
[Boigelot, PhD 98; Finkel \& Leroux, FSTTCS'02]
- Decision procedures
- Translation into Presburger arithmetic.
[Fribourg \& Olsén, CONCUR'97; Finkel \& Leroux, FSTTCS'02]
- Direct analysis on runs.
[Rackoff, TCS 78]
- Approximating reachability sets.
[Karp \& Miller, JCSS 69]
- Well-structured transition systems.
[Finkel \& Schnoebelen, TCS 01]
- Tools: Fast, LASh, TReX, FLATA, ...

A fundamental decidable theory

- First-order theory of $\langle\mathbb{N},+, \leq\rangle$ introduced by Mojzesz Presburger (1929).
- Many properties: decidability, quantifier elimination, quantifier-free fragment in NP, ...

A fundamental decidable theory

- First-order theory of $\langle\mathbb{N},+, \leq\rangle$ introduced by Mojzesz Presburger (1929).
- Many properties: decidability, quantifier elimination, quantifier-free fragment in NP, ...
- Terms $t=a_{1} x_{1}+\cdots+a_{n} x_{n}+k$ where $a_{1}, \ldots, a_{n} \in \mathbb{N}, k$ is in \mathbb{N} and the x_{i} 's are variables.
- Presburger formulae: $\phi::=t \leq t^{\prime}|\neg \phi| \phi \wedge \phi \mid \exists \mathrm{x} \phi$

Presburger arithmetic

- Valuation $\mathfrak{v}: \operatorname{VAR} \rightarrow \mathbb{N}+$ extension to all terms with

$$
\mathfrak{v}\left(a_{1} x_{1}+\cdots+a_{n} x_{n}+k\right) \stackrel{\text { def }}{=} a_{1} \mathfrak{v}\left(x_{1}\right)+\cdots+a_{n} \mathfrak{v}\left(x_{n}\right)+k
$$

Presburger arithmetic

- Valuation $\mathfrak{v}: \operatorname{VAR} \rightarrow \mathbb{N}+$ extension to all terms with

$$
\mathfrak{v}\left(a_{1} x_{1}+\cdots+a_{n} x_{n}+k\right) \stackrel{\text { def }}{=} a_{1} \mathfrak{v}\left(x_{1}\right)+\cdots+a_{n} \mathfrak{v}\left(x_{n}\right)+k
$$

- $\mathfrak{v} \models t \leq t^{\prime}$ iff $\mathfrak{v}(t) \leq \mathfrak{v}\left(t^{\prime}\right) ; \mathfrak{v} \models \phi \wedge \phi^{\prime}$ iff $\mathfrak{v} \models \phi$ and $\mathfrak{v} \models \phi^{\prime}$,
- $\mathfrak{v} \models \exists \mathrm{x} \phi \stackrel{\text { def }}{\Leftrightarrow}$ there is $n \in \mathbb{N}$ such that $\mathfrak{v}[\mathrm{x} \mapsto n] \models \phi$.

Presburger arithmetic

- Valuation $\mathfrak{v}: \operatorname{VAR} \rightarrow \mathbb{N}+$ extension to all terms with

$$
\mathfrak{v}\left(a_{1} x_{1}+\cdots+a_{n} x_{n}+k\right) \stackrel{\text { def }}{=} a_{1} \mathfrak{v}\left(x_{1}\right)+\cdots+a_{n} \mathfrak{v}\left(x_{n}\right)+k
$$

- $\mathfrak{v} \models t \leq t^{\prime}$ iff $\mathfrak{v}(t) \leq \mathfrak{v}\left(t^{\prime}\right) ; \mathfrak{v} \models \phi \wedge \phi^{\prime}$ iff $\mathfrak{v} \models \phi$ and $\mathfrak{v} \models \phi^{\prime}$,
- $\mathfrak{v} \models \exists \mathrm{x} \phi \stackrel{\text { def }}{\Leftrightarrow}$ there is $n \in \mathbb{N}$ such that $\mathfrak{v}[\mathrm{x} \mapsto n] \models \phi$.
- Formula $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right)$ with $n \geq 1$ free variables:

$$
\llbracket \phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right) \rrbracket \stackrel{\text { def }}{=}\left\{\left\langle\mathfrak{v}\left(\mathrm{x}_{1}\right), \ldots, \mathfrak{v}\left(\mathrm{x}_{n}\right)\right\rangle \in \mathbb{N}^{n}: \mathfrak{v} \models \phi\right\}
$$

- ϕ is satisfiable $\stackrel{\text { def }}{\Leftrightarrow}$ there is \mathfrak{v} such that $\mathfrak{v} \models \phi$.

Decision procedures and tools

- Quantifier elimination and refinements
[Cooper, ML 72; Reddy \& Loveland, STOC’78]
- Tools dealing with quantifier-free PA, full PA or quantifier elimination: Z3, CVC4, Alt-Ergo, Yices2, Omega test.

Decision procedures and tools

- Quantifier elimination and refinements
[Cooper, ML 72; Reddy \& Loveland, STOC’78]
- Tools dealing with quantifier-free PA, full PA or quantifier elimination: Z3, CVC4, Alt-Ergo, Yices2, Omega test.
- Automata-based approach.
[Büchi, ZML 60; Boudet \& Comon, CAAP'96]
- Automata-based tools for Presburger arithmetic: LIRA, suite of libraries TAPAS, MONA, and LASH.

Presburger counter machines

- Presburger counter machine $\mathrm{M}=\langle Q, T, C\rangle$:
- Q is a nonempty finite set of control states.
- C is a finite set counters $\left\{x_{1}, \ldots, x_{d}\right\}$ for some $d \geq 1$,
- $d \geq 1$ is the dimension.
- $T=$ finite set of transitions of the form $t=\left\langle q, \phi, q^{\prime}\right\rangle$ where $q, q^{\prime} \in Q$ and ϕ is a Presburger formula with free variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{d}, \mathrm{x}_{1}^{\prime}, \ldots, \mathrm{x}_{d}^{\prime}$.

- Configuration $\langle q, \mathbf{x}\rangle \in \mathfrak{S}=Q \times \mathbb{N}^{d}$.

Transition system $\mathfrak{T}(\mathrm{c})$

- Transition system $\mathfrak{T}(\mathrm{C})=\langle\mathfrak{S}, \rightarrow\rangle$:
- $\langle q, \mathbf{x}\rangle \rightarrow\left\langle q^{\prime}, \mathbf{x}^{\prime}\right\rangle \stackrel{\text { def }}{\Leftrightarrow}$ there is $t=\left\langle q, \phi, q^{\prime}\right\rangle$ such that $\mathfrak{v}\left[\overline{\mathrm{x}} \leftarrow \mathbf{x}, \overline{\mathrm{x}^{\prime}} \leftarrow \mathbf{x}^{\prime}\right] \models \phi$

- $\xrightarrow{*}$: reflexive and transitive closure of \rightarrow.

Decision problems

- Reachability problem:

Input: PCM C, $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ and $\left\langle q_{f}, \mathbf{x}_{f}\right\rangle$.
Question: $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \xrightarrow{*}\left\langle q_{f}, \mathbf{x}_{f}\right\rangle$?

Decision problems

- Reachability problem:

Input: PCM C, $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ and $\left\langle q_{f}, \mathbf{x}_{f}\right\rangle$.
Question: $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \xrightarrow{*}\left\langle q_{f}, \mathbf{x}_{f}\right\rangle$?

- Control state reachability problem:

Input: PCM C, $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ and q_{f}.
Question: $\exists \mathbf{x}_{f}\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \xrightarrow{*}\left\langle q_{f}, \mathbf{x}_{f}\right\rangle$?

Decision problems

- Reachability problem:

Input: PCM C, $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ and $\left\langle q_{f}, \mathbf{x}_{f}\right\rangle$.
Question: $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \xrightarrow{*}\left\langle q_{f}, \mathbf{x}_{f}\right\rangle$?

- Control state reachability problem:

Input: PCM $\mathrm{C},\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ and q_{f}.
Question: $\exists \mathbf{x}_{f}\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \xrightarrow{*}\left\langle q_{f}, \mathbf{x}_{f}\right\rangle$?

- Control state repeated reachability problem:

Input: PCM $\mathrm{C},\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ and q_{f}.
Question: is there an infinite run starting from $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ such that the control state q_{f} is repeated infinitely often?

Subclasses of Presburger counter machines

- Counter machines (CM): transitions $q \xrightarrow{\phi_{g} \wedge \phi_{u}} q^{\prime} \in T$ s.t.
- ϕ_{g} is a Boolean combination of atomic formulae of the form $\mathrm{x} \geq k$,
- $\phi_{u}=\bigwedge_{i \in[1, d]} \mathrm{x}_{i}^{\prime}=\mathrm{x}_{i}+\mathbf{b}(i)$ where $\mathbf{b} \in \mathbb{Z}^{d}$.
- Minsky machines are counter machines.
- Vector addition systems with states (VASS): all the transitions are of the form $q \xrightarrow{\top \wedge \phi_{山}} q^{\prime}$. (\approx Minsky machines without tests)

Reversal-bounded counter machines

- Reversal: Alternation from nonincreasing mode to nondecreasing mode and vice-versa.

- Sequence with 3 reversals:

$0011223334444 \overline{3} 33222 \overline{3} 334444555555 \overline{4}$

- A run is r-reversal-bounded whenever the number of reversals of each counter is less or equal to r.

Semilinearity

- Let $\left\langle\mathrm{M},\left\langle q_{0}, \mathbf{x}_{0}\right\rangle\right\rangle$ be r-reversal-bounded for some $r \geq 0$. For each control state q_{f}, the set

$$
R=\left\{\mathbf{y} \in \mathbb{N}^{d}: \exists \operatorname{run}\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \xrightarrow{*}\left\langle q_{f}, \mathbf{y}\right\rangle\right\}
$$

is effectively semilinear [lbarra, JACM 78].

- I.e., one can compute effectively a Presburger formula ϕ such that $\llbracket \phi \rrbracket=R$.

Semilinearity

- Let $\left\langle\mathrm{M},\left\langle q_{0}, \mathbf{x}_{0}\right\rangle\right\rangle$ be r-reversal-bounded for some $r \geq 0$. For each control state q_{f}, the set

$$
R=\left\{\mathbf{y} \in \mathbb{N}^{d}: \exists \operatorname{run}\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \xrightarrow{*}\left\langle q_{f}, \mathbf{y}\right\rangle\right\}
$$

is effectively semilinear [lbarra, JACM 78].

- I.e., one can compute effectively a Presburger formula ϕ such that $\llbracket \phi \rrbracket=R$.
- The reachability problem with bounded number of reversals:

Input: $\mathrm{CM} \mathrm{M},\langle q, \mathbf{x}\rangle,\left\langle q^{\prime}, \mathbf{x}^{\prime}\right\rangle$ and $r \geq 0$.
Question: Is there a run $\langle q, \mathbf{x}\rangle \xrightarrow{*}\left\langle q^{\prime}, \mathbf{x}^{\prime}\right\rangle$ s.t. each counter performs during the run a number of reversals bounded by r ?

- The problem is decidable (add tuples in the control states to count the numbers of reversals).

Proof ideas

- Reachability relation of simple loops can be expressed in Presburger arithmetic.
- Runs can be normalized so that:
- each simple loop is visited at most an exponential number of times,
- the different simple loops are visited in a structured way.
- Parikh images of context-free languages are effectively semilinear.
[Parikh, JACM 66]

$$
\begin{gathered}
\phi=\left(\mathrm{x}_{1} \geq 2 \wedge \mathrm{x}_{2} \geq 1 \wedge\left(\mathrm{x}_{2}+1 \geq \mathrm{x}_{1}\right) \vee\left(\mathrm{x}_{2} \geq 2 \wedge \mathrm{x}_{1} \geq 1 \wedge \mathrm{x}_{1}+1 \geq \mathrm{x}_{2}\right)\right. \\
\mathbb{L} \rrbracket=\left\{\mathbf{y} \in \mathbb{N}^{2}:\left\langle q_{1}, \mathbf{0}\right\rangle \xrightarrow{*}\left\langle q_{9}, \mathbf{y}\right\rangle\right\}
\end{gathered}
$$

Complexity of reachability problems

- Reachability problem with bounded number of reversals:

> Input: $\mathrm{CM} \mathrm{M},\langle q, \mathbf{x}\rangle,\left\langle q^{\prime}, \mathbf{x}^{\prime}\right\rangle$ and $r \geq 0$.
> Question: Is there a run $\langle q, \mathbf{x}\rangle \xrightarrow{*}\left\langle q^{\prime}, \mathbf{x}^{\prime}\right\rangle$ s.t. each counter performs during the run a number of reversals bounded by r ?

- The problem is NP-complete, assuming that all the natural numbers are encoded in binary except the number of reversals.
- The problem is NEXPTIME-complete assuming that all the natural numbers are encoded in binary.
[Gurari \& Ibarra, ICALP'81; Howell \& Rosier, JCSS 87]
- NEXPTime-hardness as a consequence of the standard simulation of Turing machines.

Extensions

- Adding a free counter preserves the effective semilinearity of the reachability set.
[lbarra, JACM 78]
- Adding guards of the form $\mathrm{x}_{i}=\mathrm{x}_{i^{\prime}}$ and $\mathrm{x}_{i} \neq \mathrm{x}_{i^{\prime}}$ leads to undecidability of the reachability problem.
- Reversals are recorded only above a bound B:

- This preserves the effective semilinearity of the reachability set.
[Finkel \& Sangnier, MFCS'08]

Safely enriching the set of guards

- Atomic formulae in guards are of the form $t \leq k$ or $t \geq k$ with $k \in \mathbb{Z}$ and t is of the form $\sum_{i} a_{i} x_{i}$ with the a_{i} 's in \mathbb{Z}.
- T : a finite set of terms including $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{d}\right\}$.
- A run is r-T-reversal-bounded $\stackrel{\text { def }}{\Leftrightarrow}$ the number of reversals of each term in $T \leq r$ times.

Reversal-boundedness leads to semilinearity

- Given a counter machine $M, \mathrm{~T}_{\mathrm{M}} \stackrel{\text { def }}{=}$ the set of terms t occurring in $t \sim k$ with $\sim \in\{\leq, \geq\}+$ counters in $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{d}\right\}$.
- $\left\langle\mathrm{M},\left\langle q_{0}, \mathbf{x}_{0}\right\rangle\right\rangle$ is reversal-bounded $\stackrel{\text { def }}{\Leftrightarrow}$ there is $r \geq 0$ such that every run from $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ is $r-\mathrm{T}_{\mathrm{M}}$-reversal-bounded.
- When $\mathrm{T}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{d}\right\}, \mathrm{T}$-reversal-boundedness is equivalent to reversal-boundedness from [lbarra, JACM 78].

Reversal-boundedness leads to semilinearity

- Given a counter machine $M, \mathrm{~T}_{\mathrm{M}} \stackrel{\text { def }}{=}$ the set of terms t occurring in $t \sim k$ with $\sim \in\{\leq, \geq\}+$ counters in $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{d}\right\}$.
- $\left\langle\mathrm{M},\left\langle q_{0}, \mathbf{x}_{0}\right\rangle\right\rangle$ is reversal-bounded $\stackrel{\text { def }}{\Leftrightarrow}$ there is $r \geq 0$ such that every run from $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ is $r-\mathrm{T}_{\mathrm{M}}$-reversal-bounded.
- When $\mathrm{T}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{d}\right\}, \mathrm{T}$-reversal-boundedness is equivalent to reversal-boundedness from [Ibarra, JACM 78].
- Given a counter machine $\mathrm{m}, r \geq 0$ and $q, q^{\prime} \in Q$, one can effectively compute a Presburger formula $\phi_{q, q^{\prime}}(\bar{x}, \overline{\mathrm{y}})$ such that for all \mathfrak{v}, propositions below are equivalent:
- $\mathfrak{v} \models \phi_{q, q^{\prime}}(\overline{\mathrm{x}}, \overline{\mathrm{y}})$,
- there is an $r-\mathrm{T}_{\mathrm{C}}$-reversal-bounded run from

$$
\left\langle q,\left\langle\mathfrak{v}\left(\mathrm{x}_{1}\right), \ldots, \mathfrak{v}\left(\mathrm{x}_{d}\right)\right\rangle\right\rangle \text { to }\left\langle q^{\prime},\left\langle\mathfrak{v}\left(\mathrm{y}_{1}\right), \ldots, \mathfrak{v}\left(\mathrm{y}_{d}\right)\right\rangle\right\rangle .
$$

[Ibarra, JACM 78; Demri \& Bersani, FROCOS'11]

Verifying Temporal Properties

A temporal logic

- Arithmetical terms $(a \in \mathbb{Z})$:

$$
t::=a x|a X x| t+t
$$

- Xx is interpreted as the next value of the counter x .
- Formulae:

$$
\phi::=\top|q| t \sim k\left|t \equiv_{c} k^{\prime}\right| \neg \phi|\phi \wedge \phi| \mathrm{X} \phi|\phi \cup \phi| \mathrm{X}^{-1} \phi
$$

- Linear-time operators X, U and X^{-1}, S.
- Counter values at the previous position can be simulated.
- Models: infinite runs of counter machines.

Reversal-bounded model-checking problem

- T_{ϕ} : set of terms of the form $\sum_{k}\left(a_{k}+b_{k}\right) \mathrm{x}_{k}$ when $t=\left(\sum_{k} a_{k} X x_{k}\right)+\left(\sum_{k} b_{k} x_{k}\right)$ is a term occurring in ϕ.
- T_{M} : set of terms t occurring in $t \sim k$ with $\sim \in\{\leq, \geq\}+$ counters in $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{d}\right\}$.
- Problem RBMC:

Input: a CM M, $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$, a formula ϕ, a bound $r \in \mathbb{N}$ (in binary),
Question: Is there an infinite run ρ from $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ such that $\rho, 0 \vDash \phi$ and ρ is r-T-reversal-bounded with $\mathrm{T}=\mathrm{T}_{\mathrm{C}} \cup \mathrm{T}_{\phi}$?

Reversal-bounded model-checking problem

- T_{ϕ} : set of terms of the form $\sum_{k}\left(a_{k}+b_{k}\right) \mathrm{x}_{k}$ when $t=\left(\sum_{k} a_{k} X x_{k}\right)+\left(\sum_{k} b_{k} x_{k}\right)$ is a term occurring in ϕ.
- T_{M} : set of terms t occurring in $t \sim k$ with $\sim \in\{\leq, \geq\}+$ counters in $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{d}\right\}$.
- Problem RBMC:

Input: a CM $M,\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$, a formula ϕ, a bound $r \in \mathbb{N}$ (in binary),
Question: Is there an infinite run ρ from $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ such that $\rho, 0 \models \phi$ and ρ is r-T-reversal-bounded with $T=T_{C} \cup T_{\phi}$?

- RBMC is NExpTime-complete.
[Howell \& Rosier, JCSS 87]
[Bersani \& Demri, FROCOS'11, Hague \& Lin, CAV'11]
(Proof plan: RBMC \leq repeated reachability \leq reachabillty)
- Global model-checking is also possible for RBMC.

The Reversal-Boundedness Detection Problem

The reversal-boundedness detection problem

- The reversal-boundedness detection problem:

Input: Counter machine M of dimension d, configuration $\left\langle\mathrm{M},\left\langle q_{0}, \mathbf{x}_{0}\right\rangle\right\rangle$ and $i \in[1, d]$.

Question: Is $\left\langle\mathrm{M},\left\langle q_{0}, \mathbf{x}_{0}\right\rangle\right\rangle$ reversal-bounded with respect to the counter x_{i} ?

- Undecidability due to [Ibarra, JACM 78].
- Restriction to VASS is decidable [Finkel \& Sangnier, MFCS'08].

Undecidability proof

- Minsky machine M with halting state q_{H} (2 counters).
- Either m has a unique infinite run (and never visits q_{H}) or m has a finite run (and halts at q_{H}).
- Counter machine $\mathrm{M}^{\prime}:$ replace $t=q_{i}{ }^{\phi} q_{j}$ by

$$
q_{i} \xrightarrow{\text { inc(1) }} q_{1, t}^{\text {new }} \xrightarrow{\operatorname{dec}(1)} q_{2, t}^{\text {new }} \xrightarrow{\phi} q_{j}
$$

- We have the following equivalences:
- m halts.
- For $\mathrm{m}^{\prime}, q_{H}$ is reached from $\left\langle q_{0}, \mathbf{0}\right\rangle$.
- Unique run of m^{\prime} starting by $\left\langle q_{0}, \mathbf{0}\right\rangle$ is finite.
- m^{\prime} is reversal-bounded from $\left\langle\boldsymbol{q}_{0}, \mathbf{0}\right\rangle$.

ExpSpACE-completeness for VASS

- Complexity lower bound is obtained as a slight variant of Lipton's proof for the reachability problem for VASS.
[Lipton, TR 76]
- ExpSPACE upper bound by reduction into the place-boundedness problem for VASS.
[Demri, JCSS 13]
- Place boundedness problem for VASS:

$$
\begin{aligned}
& \text { Input: } \text { A VASS } \mathrm{m}=\langle Q, T, C\rangle \text { with } \operatorname{card}(C)=d \text {, an } \\
& \text { initial configuration }\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \text { and a counter } \\
& \mathrm{x}_{j} \in C .
\end{aligned}
$$

Question: Is there a bound $B \in \mathbb{N}$ such that $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \xrightarrow{*}\left\langle q^{\prime}, \mathbf{x}^{\prime}\right\rangle$ implies $\mathbf{x}^{\prime}(j) \leq B$?

- Proof idea: add a new counter that counts the number of reversals for the distinguished counter x_{i}.

Concluding remarks

- Bounding the number of reversals in counter machines underapproximates its computational behaviors.
- Effective semilinearity holds for (repeated) reachability and even for LTL-like logics (conditions apply).
- Solvers for Presburger arithmetic helpful for decision procedures related to reversal-bounded counter machines.
- VASS witness better computational properties.
- Can the techniques be used for other types of boundedness?

Advances In Modal Logic 2016 (AIML'16)

- 11th Conference on Advances in Modal Logic, Budapest, Hungary.
- Organizer: Andras Maté.
- PC co-chairs: L. Beklemishev \& S. Demri.
- Dates
- Submission

March 10th, 2016

- Notification

May 10th, 2016

- Conference

August 29th to September 02, 2016

