Reversal-Bounded Counter Machines

Stéphane Demri

LSV, CNRS, ENS Cachan

Workshop on Logics for Resource-Bounded Agents, Barcelona, August 2015

イロト イヨト イヨト イヨト

- 2

Presburger Counter Machines

Reversal-Bounded Counter Machines

Verifying Temporal Properties

The Reversal-Boundedness Detection Problem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Presburger Counter Machines

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Integer programs

 Finite-state automaton with counters interpreted by non-negative integers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Integer programs

Finite-state automaton with counters interpreted by non-negative integers.

- Many applications:
 - Broadcast protocols, Petri nets, …
 - Programs with pointer variables. [Bouajjani et al., CAV'06]
- - Replicated finite-state programs.

[Kaiser & Kroening & Wahl, CAV'10]

Relationships with data logics. [Bojańczyk et al., TOCL 11]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Integer programs

Finite-state automaton with counters interpreted by non-negative integers.

- Many applications:
 - Broadcast protocols, Petri nets, ...
 - Programs with pointer variables. [Bouajjani et al., CAV'06]
 - Replicated finite-state programs.

[Kaiser & Kroening & Wahl, CAV'10]

- Relationships with data logics. [Bojańczyk et al., TOCL 11]
- Techniques for model-checking infinite-state systems are required for formal verification.
- But, integer programs can simulate Turing machines.
- Checking safety or liveness properties is undecidable.

Taming verification of counter machines

- Design of subclasses with decidable reachability problems
 - ► Vector addition systems (≈ Petri nets) [Kosaraju, STOC'82]
 - Flat relational counter machines. [Comon & Jurski, CAV'98]
 - Reversal-bounded counter machines. [Ibarra, JACM 78]
 - Flat affine counter machines with finite monoids.

[Boigelot, PhD 98; Finkel & Leroux, FSTTCS'02]

(日) (日) (日) (日) (日) (日) (日)

. . .

Taming verification of counter machines

- Design of subclasses with decidable reachability problems
 - ► Vector addition systems (≈ Petri nets) [Kosaraju, STOC'82]
 - Flat relational counter machines. [Comon & Jurski, CAV'98]
 - Reversal-bounded counter machines. [Ibarra, JACM 78]
 - Flat affine counter machines with finite monoids.

[Boigelot, PhD 98; Finkel & Leroux, FSTTCS'02]

. . .

- Decision procedures
 - Translation into Presburger arithmetic. [Fribourg & Olsén, CONCUR'97; Finkel & Leroux, FSTTCS'02]
 - Direct analysis on runs.
 - Approximating reachability sets. [Karp & Miller, JCSS 69]
 - Well-structured transition systems.

[Finkel & Schnoebelen, TCS 01]

[Rackoff, TCS 78]

Taming verification of counter machines

- Design of subclasses with decidable reachability problems
 - ► Vector addition systems (≈ Petri nets) [Kosaraju, STOC'82]
 - Flat relational counter machines. [Comon & Jurski, CAV'98]
 - Reversal-bounded counter machines. [Ibarra, JACM 78]
 - Flat affine counter machines with finite monoids.

[Boigelot, PhD 98; Finkel & Leroux, FSTTCS'02]

. . .

- Decision procedures
 - Translation into Presburger arithmetic. [Fribourg & Olsén, CONCUR'97; Finkel & Leroux, FSTTCS'02]
 - Direct analysis on runs. [Rackoff, TCS 78]
 - Approximating reachability sets. [Karp & Miller, JCSS 69]
 - Well-structured transition systems.

[Finkel & Schnoebelen, TCS 01]

▶ Tools: FAST, LASH, TREX, FLATA, ...

A fundamental decidable theory

- First-order theory of ⟨ℕ, +, ≤⟩ introduced by Mojzesz Presburger (1929).
- Many properties: decidability, quantifier elimination, quantifier-free fragment in NP, ...

(ロ) (同) (三) (三) (三) (○) (○)

A fundamental decidable theory

- ► First-order theory of (N, +, ≤) introduced by Mojzesz Presburger (1929).
- Many properties: decidability, quantifier elimination, quantifier-free fragment in NP, ...
- ▶ Terms $t = a_1x_1 + \cdots + a_nx_n + k$ where $a_1, \ldots, a_n \in \mathbb{N}$, *k* is in \mathbb{N} and the x_i 's are variables.

A D F A 同 F A E F A E F A Q A

▶ Presburger formulae: $\phi ::= t \le t' | \neg \phi | \phi \land \phi | \exists x \phi$

Presburger arithmetic

▶ Valuation $v : VAR \to \mathbb{N}$ + extension to all terms with

$$\mathfrak{v}(a_1\mathbf{x}_1 + \cdots + a_n\mathbf{x}_n + k) \stackrel{\text{def}}{=} a_1\mathfrak{v}(\mathbf{x}_1) + \cdots + a_n\mathfrak{v}(\mathbf{x}_n) + k$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Presburger arithmetic

▶ Valuation $v : VAR \to \mathbb{N}$ + extension to all terms with

$$\mathfrak{v}(a_1\mathbf{x}_1+\cdots+a_n\mathbf{x}_n+k)\stackrel{\text{\tiny def}}{=}a_1\mathfrak{v}(\mathbf{x}_1)+\cdots+a_n\mathfrak{v}(\mathbf{x}_n)+k$$

$$\blacktriangleright \ \mathfrak{v} \models \mathtt{t} \leq \mathtt{t}' \text{ iff } \mathfrak{v}(\mathtt{t}) \leq \mathfrak{v}(\mathtt{t}'); \mathfrak{v} \models \phi \land \phi' \text{ iff } \mathfrak{v} \models \phi \text{ and } \mathfrak{v} \models \phi',$$

▶ $\mathfrak{v} \models \exists x \phi \stackrel{\text{def}}{\Leftrightarrow}$ there is $n \in \mathbb{N}$ such that $\mathfrak{v}[x \mapsto n] \models \phi$.

Presburger arithmetic

▶ Valuation $v : VAR \to \mathbb{N}$ + extension to all terms with

$$\mathfrak{v}(a_1\mathbf{x}_1+\cdots+a_n\mathbf{x}_n+k)\stackrel{\text{\tiny def}}{=}a_1\mathfrak{v}(\mathbf{x}_1)+\cdots+a_n\mathfrak{v}(\mathbf{x}_n)+k$$

- $\blacktriangleright \ \mathfrak{v} \models \mathtt{t} \leq \mathtt{t}' \text{ iff } \mathfrak{v}(\mathtt{t}) \leq \mathfrak{v}(\mathtt{t}'); \mathfrak{v} \models \phi \land \phi' \text{ iff } \mathfrak{v} \models \phi \text{ and } \mathfrak{v} \models \phi',$
- ▶ $\mathfrak{v} \models \exists x \phi \Leftrightarrow^{\text{def}}$ there is $n \in \mathbb{N}$ such that $\mathfrak{v}[x \mapsto n] \models \phi$.
- Formula $\phi(\mathbf{x}_1, \ldots, \mathbf{x}_n)$ with $n \ge 1$ free variables:

$$\llbracket \phi(\mathsf{X}_1,\ldots,\mathsf{X}_n) \rrbracket \stackrel{\text{def}}{=} \{ \langle \mathfrak{v}(\mathsf{X}_1),\ldots,\mathfrak{v}(\mathsf{X}_n) \rangle \in \mathbb{N}^n : \mathfrak{v} \models \phi \}.$$

• ϕ is satisfiable $\stackrel{\text{\tiny def}}{\Leftrightarrow}$ there is v such that $v \models \phi$.

Decision procedures and tools

Quantifier elimination and refinements

[Cooper, ML 72; Reddy & Loveland, STOC'78]

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Tools dealing with quantifier-free PA, full PA or quantifier elimination: Z3, CVC4, Alt-Ergo, Yices2, Omega test.

Decision procedures and tools

Quantifier elimination and refinements

[Cooper, ML 72; Reddy & Loveland, STOC'78]

- Tools dealing with quantifier-free PA, full PA or quantifier elimination: Z3, CVC4, Alt-Ergo, Yices2, Omega test.
- Automata-based approach.

[Büchi, ZML 60; Boudet & Comon, CAAP'96]

(日) (日) (日) (日) (日) (日) (日)

Automata-based tools for Presburger arithmetic: LIRA, suite of libraries TAPAS, MONA, and LASH.

Presburger counter machines

• Presburger counter machine $M = \langle Q, T, C \rangle$:

- Q is a nonempty finite set of control states.
- *C* is a finite set counters $\{x_1, \ldots, x_d\}$ for some $d \ge 1$,
- $d \ge 1$ is the dimension.
- ► T = finite set of transitions of the form $t = \langle q, \phi, q' \rangle$ where $q, q' \in Q$ and ϕ is a Presburger formula with free variables $x_1, \ldots, x_d, x'_1, \ldots, x'_d$.

• Configuration $\langle q, \mathbf{x} \rangle \in \mathfrak{S} = \mathbf{Q} \times \mathbb{N}^{\mathbf{d}}$.

・ロト・西・・山・・ ・ 日・

Transition system $\mathfrak{T}(C)$

- Transition system $\mathfrak{T}(C) = \langle \mathfrak{S}, \rightarrow \rangle$:
 - $\langle q, \mathbf{x} \rangle \rightarrow \langle q', \mathbf{x}' \rangle \stackrel{\text{def}}{\Leftrightarrow}$ there is $t = \langle q, \phi, q' \rangle$ such that $\mathfrak{v}[\overline{\mathbf{x}} \leftarrow \mathbf{x}, \overline{\mathbf{x}'} \leftarrow \mathbf{x}'] \models \phi$

• $\stackrel{*}{\rightarrow}$: reflexive and transitive closure of \rightarrow .

Decision problems

Reachability problem:

Input: PCM C, $\langle q_0, \mathbf{x}_0 \rangle$ and $\langle q_f, \mathbf{x}_f \rangle$. Question: $\langle q_0, \mathbf{x}_0 \rangle \xrightarrow{*} \langle q_f, \mathbf{x}_f \rangle$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Decision problems

► Reachability problem: Input: PCM C, $\langle q_0, \mathbf{x}_0 \rangle$ and $\langle q_f, \mathbf{x}_f \rangle$. Question: $\langle q_0, \mathbf{x}_0 \rangle \xrightarrow{*} \langle q_f, \mathbf{x}_f \rangle$?

(日) (日) (日) (日) (日) (日) (日)

► Control state reachability problem: Input: PCM C, $\langle q_0, \mathbf{x}_0 \rangle$ and q_f . Question: $\exists \mathbf{x}_f \langle q_0, \mathbf{x}_0 \rangle \xrightarrow{*} \langle q_f, \mathbf{x}_f \rangle$?

Decision problems

► Reachability problem: Input: PCM C, $\langle q_0, \mathbf{x}_0 \rangle$ and $\langle q_f, \mathbf{x}_f \rangle$. Question: $\langle q_0, \mathbf{x}_0 \rangle \xrightarrow{*} \langle q_f, \mathbf{x}_f \rangle$?

► Control state reachability problem: Input: PCM C, $\langle q_0, \mathbf{x}_0 \rangle$ and q_f . Question: $\exists \mathbf{x}_f \langle q_0, \mathbf{x}_0 \rangle \xrightarrow{*} \langle q_f, \mathbf{x}_f \rangle$?

Control state repeated reachability problem:

Input: PCM C, $\langle q_0, \mathbf{x}_0 \rangle$ and q_f .

Question: is there an infinite run starting from $\langle q_0, \mathbf{x}_0 \rangle$ such that the control state q_f is repeated infinitely often?

Subclasses of Presburger counter machines

- Counter machines (CM): transitions $q \xrightarrow{\phi_g \land \phi_u} q' \in T$ s.t.
 - *φ_g* is a Boolean combination of atomic formulae of the form x ≥ k,

•
$$\phi_u = \bigwedge_{i \in [1,d]} \mathbf{x}'_i = \mathbf{x}_i + \mathbf{b}(i)$$
 where $\mathbf{b} \in \mathbb{Z}^d$.

- Minsky machines are counter machines.
- Vector addition systems with states (VASS): all the transitions are of the form q → q'.
 (≈ Minsky machines without tests)

Reversal-bounded counter machines

 Reversal: Alternation from nonincreasing mode to nondecreasing mode and vice-versa.

Sequence with 3 reversals:

0011223334444333322233344445555554

A run is r-reversal-bounded whenever the number of reversals of each counter is less or equal to r.

Semilinearity

Let ⟨M, ⟨q₀, x₀⟩⟩ be *r*-reversal-bounded for some *r* ≥ 0. For each control state q_f, the set

$$\boldsymbol{\textit{R}} = \{\boldsymbol{y} \in \mathbb{N}^d: \ \exists \ \mathrm{run} \ \langle \boldsymbol{\textit{q}}_0, \boldsymbol{x}_0 \rangle \xrightarrow{*} \langle \boldsymbol{\textit{q}}_f, \boldsymbol{y} \rangle \}$$

(ロ) (同) (三) (三) (三) (○) (○)

is effectively semilinear [Ibarra, JACM 78].

I.e., one can compute effectively a Presburger formula φ such that [[φ]] = R.

Semilinearity

Let ⟨M, ⟨q₀, x₀⟩⟩ be *r*-reversal-bounded for some *r* ≥ 0. For each control state q_f, the set

$$\boldsymbol{R} = \{ \boldsymbol{\mathsf{y}} \in \mathbb{N}^d : \exists \operatorname{run} \langle \boldsymbol{q}_0, \boldsymbol{\mathsf{x}}_0 \rangle \xrightarrow{*} \langle \boldsymbol{q}_f, \boldsymbol{\mathsf{y}} \rangle \}$$

is effectively semilinear [Ibarra, JACM 78].

- I.e., one can compute effectively a Presburger formula φ such that [[φ]] = R.
- The reachability problem with bounded number of reversals:

Input: CM M, $\langle q, \mathbf{x} \rangle$, $\langle q', \mathbf{x}' \rangle$ and $r \ge 0$. Question: Is there a run $\langle q, \mathbf{x} \rangle \xrightarrow{*} \langle q', \mathbf{x}' \rangle$ s.t. each counter performs during the run a number of reversals bounded by r?

The problem is decidable (add tuples in the control states to count the numbers of reversals).

Proof ideas

- Reachability relation of simple loops can be expressed in Presburger arithmetic.
- Runs can be normalized so that:
 - each simple loop is visited at most an exponential number of times,
 - the different simple loops are visited in a structured way.
- Parikh images of context-free languages are effectively semilinear. [Parikh, JACM 66]

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

$$\begin{split} \phi &= (\mathbf{x}_1 \ge 2 \land \mathbf{x}_2 \ge 1 \land (\mathbf{x}_2 + 1 \ge \mathbf{x}_1) \lor (\mathbf{x}_2 \ge 2 \land \mathbf{x}_1 \ge 1 \land \mathbf{x}_1 + 1 \ge \mathbf{x}_2) \\ & \llbracket \phi \rrbracket = \{ \mathbf{y} \in \mathbb{N}^2 : \langle \mathbf{q}_1, \mathbf{0} \rangle \xrightarrow{*} \langle \mathbf{q}_9, \mathbf{y} \rangle \} \end{split}$$

Complexity of reachability problems

Reachability problem with bounded number of reversals:

Input: CM M, $\langle q, \mathbf{x} \rangle$, $\langle q', \mathbf{x}' \rangle$ and $r \ge 0$. Question: Is there a run $\langle q, \mathbf{x} \rangle \xrightarrow{*} \langle q', \mathbf{x}' \rangle$ s.t. each counter performs during the run a number of reversals bounded by r?

- The problem is NP-complete, assuming that all the natural numbers are encoded in binary except the number of reversals.
- The problem is NEXPTIME-complete assuming that all the natural numbers are encoded in binary.

[Gurari & Ibarra, ICALP'81; Howell & Rosier, JCSS 87]

(日) (日) (日) (日) (日) (日) (日)

 NEXPTIME-hardness as a consequence of the standard simulation of Turing machines. [Minsky, 67]

Extensions

- Adding a free counter preserves the effective semilinearity of the reachability set. [Ibarra, JACM 78]
- Adding guards of the form x_i = x_{i'} and x_i ≠ x_{i'} leads to undecidability of the reachability problem.
- Reversals are recorded only above a bound B:

 This preserves the effective semilinearity of the reachability set. [Finkel & Sangnier, MFCS'08]

・ コット (雪) (小田) (コット 日)

Safely enriching the set of guards

- Atomic formulae in guards are of the form t ≤ k or t ≥ k with k ∈ Z and t is of the form ∑_i a_ix_i with the a_i's in Z.
- T: a finite set of terms including $\{x_1, \ldots, x_d\}$.
- A run is *r*-⊤-reversal-bounded def the number of reversals of each term in ⊤ ≤ *r* times.

(ロ) (同) (三) (三) (三) (○) (○)

Reversal-boundedness leads to semilinearity

- Given a counter machine M, T_M ^{def} = the set of terms t occurring in t ~ k with ~∈ {≤, ≥} + counters in {x₁,..., x_d}.
- ⟨M, ⟨q₀, x₀⟩⟩ is reversal-bounded ^{def} → there is r ≥ 0 such that every run from ⟨q₀, x₀⟩ is r-T_M-reversal-bounded.
- When T = {x₁,...,x_d}, T-reversal-boundedness is equivalent to reversal-boundedness from [Ibarra, JACM 78].

Reversal-boundedness leads to semilinearity

- Given a counter machine M, T_M ^{def} = the set of terms t occurring in t ~ k with ~∈ {≤, ≥} + counters in {x₁,..., x_d}.
- ⟨M, ⟨q₀, 𝑥₀⟩⟩ is reversal-bounded ^{def} → there is r ≥ 0 such that every run from ⟨q₀, 𝑥₀⟩ is r-𝔽_M-reversal-bounded.
- When T = {x₁,...,x_d}, T-reversal-boundedness is equivalent to reversal-boundedness from [Ibarra, JACM 78].
- ► Given a counter machine M, r ≥ 0 and q, q' ∈ Q, one can effectively compute a Presburger formula φ_{q,q'}(x, y) such that for all v, propositions below are equivalent:
 - $\mathfrak{v} \models \phi_{q,q'}(\overline{\mathbf{x}},\overline{\mathbf{y}}),$
 - there is an r- $\mathbb{T}_{\mathbb{C}}$ -reversal-bounded run from $\langle q, \langle \mathfrak{v}(x_1), \ldots, \mathfrak{v}(x_d) \rangle \rangle$ to $\langle q', \langle \mathfrak{v}(y_1), \ldots, \mathfrak{v}(y_d) \rangle \rangle$.

[Ibarra, JACM 78; Demri & Bersani, FROCOS'11]

Verifying Temporal Properties

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

A temporal logic

• Arithmetical terms (
$$a \in \mathbb{Z}$$
):

Xx is interpreted as the next value of the counter x.

Formulae:

 $\phi ::= \top \mid q \mid t \sim k \mid t \equiv_{c} k' \mid \neg \phi \mid \phi \land \phi \mid X\phi \mid \phi U\phi \mid X^{-1}\phi$

- ▶ Linear-time operators X, U and X⁻¹, S.
- Counter values at the previous position can be simulated.
- Models: infinite runs of counter machines.

Reversal-bounded model-checking problem

- \mathbb{T}_{ϕ} : set of terms of the form $\sum_{k} (a_{k} + b_{k}) \mathbf{x}_{k}$ when $\mathbf{t} = (\sum_{k} a_{k} \mathbf{X} \mathbf{x}_{k}) + (\sum_{k} b_{k} \mathbf{x}_{k})$ is a term occurring in ϕ .
- T_M: set of terms t occurring in t ∼ k with ~∈ {≤, ≥} + counters in {x₁,...,x_d}.
- Problem RBMC:

Input: a CM M, $\langle q_0, \mathbf{x}_0 \rangle$, a formula ϕ , a bound $r \in \mathbb{N}$ (in binary),

Question: Is there an infinite run ρ from $\langle q_0, \mathbf{x}_0 \rangle$ such that $\rho, \mathbf{0} \models \phi$ and ρ is *r*-T-reversal-bounded with $T = T_C \cup T_{\phi}$?

Reversal-bounded model-checking problem

- \mathbb{T}_{ϕ} : set of terms of the form $\sum_{k} (a_{k} + b_{k}) \mathbf{x}_{k}$ when $\mathbf{t} = (\sum_{k} a_{k} \mathbf{X} \mathbf{x}_{k}) + (\sum_{k} b_{k} \mathbf{x}_{k})$ is a term occurring in ϕ .
- T_M: set of terms t occurring in t ∼ k with ~∈ {≤, ≥} + counters in {x₁,...,x_d}.
- Problem RBMC:

Input: a CM M, $\langle q_0, \mathbf{x}_0 \rangle$, a formula ϕ , a bound $r \in \mathbb{N}$ (in binary),

- Question: Is there an infinite run ρ from $\langle q_0, \mathbf{x}_0 \rangle$ such that $\rho, \mathbf{0} \models \phi$ and ρ is *r*-T-reversal-bounded with $T = T_C \cup T_{\phi}$?
- RBMC is NEXPTIME-complete.

```
[Howell & Rosier, JCSS 87]
```

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

```
[Bersani & Demri, FROCOS'11, Hague & Lin, CAV'11]
```

(Proof plan: RBMC \leq repeated reachability \leq reachability)

Global model-checking is also possible for RBMC.

The Reversal-Boundedness Detection Problem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The reversal-boundedness detection problem

The reversal-boundedness detection problem:

Input: Counter machine M of dimension d, configuration $\langle M, \langle q_0, \mathbf{x}_0 \rangle \rangle$ and $i \in [1, d]$.

Question: Is $\langle M, \langle q_0, \mathbf{x}_0 \rangle$ reversal-bounded with respect to the counter x_i ?

- Undecidability due to [Ibarra, JACM 78].
- Restriction to VASS is decidable [Finkel & Sangnier, MFCS'08].

(日) (日) (日) (日) (日) (日) (日)

Undecidability proof

- Minsky machine M with halting state q_H (2 counters).
- ► Either M has a unique infinite run (and never visits q_H) or M has a finite run (and halts at q_H).
- Counter machine \mathbb{M}' : replace $t = q_i \stackrel{\phi}{\rightarrow} q_j$ by

$$q_i \stackrel{\mathrm{inc}(1)}{\longrightarrow} q_{1,t}^{\mathit{new}} \stackrel{\mathrm{dec}(1)}{\longrightarrow} q_{2,t}^{\mathit{new}} \stackrel{\phi}{\rightarrow} q_j$$

(日) (日) (日) (日) (日) (日) (日)

- We have the following equivalences:
 - M halts.
 - For M', q_H is reached from $\langle q_0, \mathbf{0} \rangle$.
 - Unique run of M' starting by $\langle q_0, \mathbf{0} \rangle$ is finite.
 - M' is reversal-bounded from $\langle q_0, \mathbf{0} \rangle$.

EXPSPACE-completeness for VASS

 Complexity lower bound is obtained as a slight variant of Lipton's proof for the reachability problem for VASS.

[Lipton, TR 76]

- EXPSPACE upper bound by reduction into the place-boundedness problem for VASS. [Demri, JCSS 13]
- Place boundedness problem for VASS:

Input: A VASS $M = \langle Q, T, C \rangle$ with card(C) = d, an initial configuration $\langle q_0, \mathbf{x}_0 \rangle$ and a counter $x_j \in C$.

Question: Is there a bound $B \in \mathbb{N}$ such that $\langle q_0, \mathbf{x}_0 \rangle \xrightarrow{*} \langle q', \mathbf{x}' \rangle$ implies $\mathbf{x}'(j) \leq B$?

Proof idea: add a new counter that counts the number of reversals for the distinguished counter x_i.

Concluding remarks

- Bounding the number of reversals in counter machines underapproximates its computational behaviors.
- Effective semilinearity holds for (repeated) reachability and even for LTL-like logics (conditions apply).
- Solvers for Presburger arithmetic helpful for decision procedures related to reversal-bounded counter machines.

(ロ) (同) (三) (三) (三) (○) (○)

- VASS witness better computational properties.
- Can the techniques be used for other types of boundedness?

Advances In Modal Logic 2016 (AIML'16)

- 11th Conference on Advances in Modal Logic, Budapest, Hungary.
- Organizer: Andras Maté.
- PC co-chairs: L. Beklemishev & S. Demri.
- Dates
 - Submission
 March 10th, 2016
 - Notification
 May 10th, 2016
 - Conference August 29th to September 02, 2016